9,446 research outputs found

    Spins coupled to a Z2Z_2-Regge lattice in 4d

    Get PDF
    We study an Ising spin system coupled to a fluctuating four-dimensional Z2Z_2-Regge lattice and compare with the results of the four-dimensional Ising model on a regular lattice. Particular emphasis is placed on the phase transition of the spin system and the associated critical exponents. We present results from finite-size scaling analyses of extensive Monte Carlo simulations which are consistent with mean-field predictions.Comment: Lattice2001(surfaces), 3 pages, 2 figure

    Comments on Sweeny and Gliozzi dynamics for simulations of Potts models in the Fortuin-Kasteleyn representation

    Full text link
    We compare the correlation times of the Sweeny and Gliozzi dynamics for two-dimensional Ising and three-state Potts models, and the three-dimensional Ising model for the simulations in the percolation prepresentation. The results are also compared with Swendsen-Wang and Wolff cluster dynamics. It is found that Sweeny and Gliozzi dynamics have essentially the same dynamical critical behavior. Contrary to Gliozzi's claim (cond-mat/0201285), the Gliozzi dynamics has critical slowing down comparable to that of other cluster methods. For the two-dimensional Ising model, both Sweeny and Gliozzi dynamics give good fits to logarithmic size dependences; for two-dimensional three-state Potts model, their dynamical critical exponent z is 0.49(1); the three-dimensional Ising model has z = 0.37(2).Comment: RevTeX, 4 pages, 5 figure

    Critical exponents of a three dimensional O(4) spin model

    Get PDF
    By Monte Carlo simulation we study the critical exponents governing the transition of the three-dimensional classical O(4) Heisenberg model, which is considered to be in the same universality class as the finite-temperature QCD with massless two flavors. We use the single cluster algorithm and the histogram reweighting technique to obtain observables at the critical temperature. After estimating an accurate value of the inverse critical temperature \Kc=0.9360(1), we make non-perturbative estimates for various critical exponents by finite-size scaling analysis. They are in excellent agreement with those obtained with the 4ϵ4-\epsilon expansion method with errors reduced to about halves of them.Comment: 25 pages with 8 PS figures, LaTeX, UTHEP-28

    Single and Double Photoionization and Photodissociation of Toluene by Soft X-rays in Circumstellar Environment

    Get PDF
    The formation of polycyclic aromatic hydrocarbons (PAHs) and their methyl derivatives occurs mainly in the dust shells of asymptotic giant branch (AGB) stars. The bands at 3.3 and 3.4 μ\mum, observed in infrared emission spectra of several objects, are attributed C-H vibrational modes in aromatic and aliphatic structures, respectively. In general, the feature at 3.3 μ\mum is more intense than the 3.4 μ\mum. Photoionization and photodissociation processes of toluene, the precursor of methylated PAHs, were studied using synchrotron radiation at soft X-ray energies around the carbon K edge with time-of-flight mass spectrometry. Partial ion yields of a large number of ionic fragments were extracted from single and 2D-spectra, where electron-ion coincidences have revealed the doubly charged parent-molecule and several doubly charged fragments containing seven carbon atoms with considerable abundance. \textit{Ab initio} calculations based on density functional theory were performed to elucidate the chemical structure of these stable dicationic species. The survival of the dications subjected to hard inner shell ionization suggests that they could be observed in the interstellar medium, especially in regions where PAHs are detected. The ionization and destruction of toluene induced by X-rays were examined in the T Dra conditions, a carbon-rich AGB star. In this context, a minimum photodissociation radius and the half-life of toluene subjected to the incidence of the soft X-ray flux emitted from a companion white dwarf star were determined.Comment: 11 pages, 4 figures, accept for publication in Ap

    Cluster algorithms

    Get PDF
    Cluster algorithms for classical and quantum spin systems are discussed. In particular, the cluster algorithm is applied to classical O(N) lattice actions containing interactions of more than two spins. The performance of the multi-cluster and single--cluster methods, and of the standard and improved estimators are compared. (Lecture given at the summer school on `Advances in Computer Simulations', Budapest, July 1996.)Comment: 17 pages, Late

    ROSAT HRI Observations of the Crab Pulsar: An Improved Temperature upper limit for PSR 0531+21

    Get PDF
    ROSAT HRI observations have been used to determine an upper limit of the Crab pulsar surface temperature from the off-pulse count rate. For a neutron star mass of 1.4 \Mo and a radius of 10 km as well as the standard distance and interstellar column density, the redshifted temperature upper limit is\/ Ts1.55×106T_s^\infty \le 1.55\times 10^6 K (3σ)(3\sigma). This is the lowest temperature upper limit obtained for the Crab pulsar so far. Slightly different values for TsT_s^\infty are computed for the various neutron star models available in the literature, reflecting the difference in the equation of state.Comment: 5 pages, uuencoded postscript, to be published in the Proceedings of the NATO Advanced Study Insitute on "Lives of the Neutron Stars", ed. A. Alpar, U. Kiziloglu and J. van Paradijs ( Kluwer, Dordrecht, 1995 )

    Critical Exponents of the Classical 3D Heisenberg Model: A Single-Cluster Monte Carlo Study

    Full text link
    We have simulated the three-dimensional Heisenberg model on simple cubic lattices, using the single-cluster Monte Carlo update algorithm. The expected pronounced reduction of critical slowing down at the phase transition is verified. This allows simulations on significantly larger lattices than in previous studies and consequently a better control over systematic errors. In one set of simulations we employ the usual finite-size scaling methods to compute the critical exponents ν,α,β,γ,η\nu,\alpha,\beta,\gamma, \eta from a few measurements in the vicinity of the critical point, making extensive use of histogram reweighting and optimization techniques. In another set of simulations we report measurements of improved estimators for the spatial correlation length and the susceptibility in the high-temperature phase, obtained on lattices with up to 1003100^3 spins. This enables us to compute independent estimates of ν\nu and γ\gamma from power-law fits of their critical divergencies.Comment: 33 pages, 12 figures (not included, available on request). Preprint FUB-HEP 19/92, HLRZ 77/92, September 199

    Water fragmentation by bare and dressed light ions with MeV energies: Fragment-ion-energy and time-of-flight distributions

    Get PDF
    The energy and time-of-flight distributions of water ionic fragments produced by impact of fast atoms and bare and dressed ions; namely, H+, Li0-3+, C1+, and C2+ are reported in this work. Fragment species as a function of emission energy and time-of-flight were recorded by using an electrostatic spectrometer and a time-of-flight mass spectrometer, respectively. An improved Coulomb explosion model coupled to a classical trajectory Monte Carlo (CTMC) simulation gave the energy centroids of the fragments for the dissociation channels resulting from the removal of two to five electrons from the water molecule. For the energy distribution ranging up to 50 eV, both the experiment and model reveal an isotropic production of multiple charged oxygen ions, as well as hydrogen ions. From the ion energy distribution, relative yields of the dissociation resulting from multiple ionization were obtained as a function of the charge state, as well as for several projectile energies. Multiple-ionization yields with charge state up to 4+, were extracted from the measurements of the time-of-flight spectra, focused on the production of single and multiple charged oxygen ions. The measurements were compared to ion-water collision experiments investigated at the keV energy range available in the literature, revealing differences and similarities in the fragment-ion energy distribution.Fil: Wolff, W.. Universidade Federal do Rio de Janeiro; BrasilFil: Luna, H.. Universidade Federal do Rio de Janeiro; BrasilFil: Schuch, R.. Alba Nova University Center; SueciaFil: Cariatore, Nelson Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Otranto, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Turco, Federico. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Fregenal, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Bernardi, Guillermo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Suárez, S.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Transition From Quantum To Quasi-classical Behaviour Of The Binary Encounter Peak In Collisions Of 0.6 To 3.6 Mev Amu“¹ I23+ And Xe21+ With He And Ar

    Get PDF
    Double differentia] cross sections are reported for the production of binary encounter electrons in collisions of 0.6 MeV amu-1 I23+ and 1.4, 2.4, and 3.6 MeV amu-1 Xe21+ projectiles incident on He and Ar targets. Electron energy spectra were measured between 0: and 45: in the case of the two lower projectile energies, and between 17.5° and 60- for the two higher projectile energies. The data are compared with quantum mechanical impulse approximation and classical trajectory Monte Carlo calculations. While the quantum model calculation predicts a rapid disappearance of diffraction effects in the binary encounter peak with increasing projectile energy, these remain visible in the experimental results up to the highest energy measured. The necessity of including multiple target ionization involving inner shell electrons in the theoretica] description of the collision process is demonstrated by the classical trajectory Monte Carlo calculation, which accounts well for the shape of the 2.4 and 3.6 MeV amu-1 cross sections, except at angles where diffraction effects are manifest. Systematic shifts of the binary encounter peak position towards lower energies with increasing emission angle were observed for all projectile energies. © 1993 IOP Publishing Ltd
    corecore