340 research outputs found

    A New Low Radiation Wireless Transmission System in Mobile Phone Application Based on Magnetic Resonant Coupling

    Get PDF
    published_or_final_versio

    Immunological characterization of chromogranins A and B and secretogranin II in the bovine pancreatic islet

    Get PDF
    Antisera against chromogranin A and B and secretogranin II were used for analysing the bovine pancreas by immunoblotting and immunohistochemistry. All three antigens were found in extracts of fetal pancreas by one dimensional immunoblotting. A comparison with the soluble proteins of chromaffin granules revealed that in adrenal medulla and in pancreas antigens which migrated identically in electrophoresis were present. In immunohistochemistry, chromogranin A was found in all pancreatic endocrine cell types with the exception of most pancreatic polypeptide-(PP-) producing cells. For chromogranin B, only a faint immunostaining was obtained. For secretorgranin II, A-and B-cells were faintly positive, whereas the majority of PP-cells exhibited a strong immunostaining for this antigen. These results establish that chromogranins A and B and secretogranin II are present in the endocrine pancreas, but that they exhibit a distinct cellular localization

    Effect of hyperbaric oxygen on mesenchymal stem cells for lumbar fusion in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperbaric oxygen (HBO) therapy has been proved in improving bone healing, but its effects on mesenchymal stem cells (MSCs) <it>in vivo </it>is not clear. The aims of this study are to clarify whether the HBO therapy has the same enhancing effect on MSCs with regard to bone formation and maturation and to ascertain whether the transplanted MSCs survive in the grafted area and contribute to new bone formation.</p> <p>Methods</p> <p>Twenty-three adult rabbits underwent posterolateral fusion at L4-L5 level. The animals were divided into three groups according to the material implanted and subsequent treatment: (1) Alginate carrier (n = 6); (2) Alginate-MSCs composite (n = 11); and (3) Alginate-MSCs composite with HBO therapy (n = 6). After 12 weeks, spine fusion was examined using radiographic examination, manual testing, and histological examination. Using a PKH fluorescence labeling system, whether the transplanted MSCs survived and contributed to new bone formation in the grafted area after HBO therapy was also examined.</p> <p>Results</p> <p>The bilateral fusion areas in each animal were evaluated independently. By radiographic examination and manual palpation, union for the Alginate, Alginate-MSCs, and Alginate-MSCs-HBO groups was 0 of 12, 10 of 22, and 6 of 12 respectively. The difference between the Alginate-MSCs and Alginate-MSCs-HBO groups was not significant (P = 0.7997). The fluorescence microscopy histological analysis indicated that the transplanted PKH67-labeled MSCs survived and partly contributed to new bone formation in the grafted area.</p> <p>Conclusions</p> <p>This study demonstrated that the preconditioned MSCs could survive and yield bone formation in the grafted area. HBO therapy did not enhance the osteogenic ability of MSCs and improve the success of spine fusion in the rabbit model. Although there was no significant effect of HBO therapy on MSCs for spine fusion, the study encourages us to research a more basic approach for determining the optimal oxygen tension and pressure that are required to maintain and enhance the osteogenic ability of preconditioned MSCs. Further controlled <it>in vivo </it>and <it>in vitro </it>studies are required for achieving a better understanding of the effect of HBO treatment on MSCs.</p

    Two loop electroweak corrections to BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- in the B-LSSM

    Full text link
    The rare decays BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- are important to research new physics beyond standard model. In this work, we investigate two loop electroweak corrections to BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- in the minimal supersymmetric extension of the SM with local BLB-L gauge symmetry (B-LSSM), under a minimal flavor violating assumption for the soft breaking terms. In this framework, new particles and new definition of squarks can affect the theoretical predictions of these two processes, with respect to the MSSM. Considering the constraints from updated experimental data, the numerical results show that the B-LSSM can fit the experimental data for the branching ratios of BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^-. The results of the rare decays also further constrain the parameter space of the B-LSSM.Comment: 33 pages, 9 figures, Published in EPJ

    Comparative molecular biological analysis of membrane transport genes in organisms

    Get PDF
    Comparative analyses of membrane transport genes revealed many differences in the features of transport homeostasis in eight diverse organisms, ranging from bacteria to animals and plants. In bacteria, membrane-transport systems depend mainly on single genes encoding proteins involved in an ATP-dependent pump and secondary transport proteins that use H+ as a co-transport molecule. Animals are especially divergent in their channel genes, and plants have larger numbers of P-type ATPase and secondary active transporters than do other organisms. The secondary transporter genes have diverged evolutionarily in both animals and plants for different co-transporter molecules. Animals use Na+ ions for the formation of concentration gradients across plasma membranes, dependent on secondary active transporters and on membrane voltages that in turn are dependent on ion transport regulation systems. Plants use H+ ions pooled in vacuoles and the apoplast to transport various substances; these proton gradients are also dependent on secondary active transporters. We also compared the numbers of membrane transporter genes in Arabidopsis and rice. Although many transporter genes are similar in these plants, Arabidopsis has a more diverse array of genes for multi-efflux transport and for response to stress signals, and rice has more secondary transporter genes for carbohydrate and nutrient transport

    Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall

    Get PDF
    Research Areas: Science & TechnologyABSTRACT - In this study, a rational combination of 200 pre-selected Carbohydrate-Active enzymes (CAZymes) and sulfatases were tested, individually or combined, according to their ability to degrade Chlorella vulgaris cell wall to access its valuable nutritional compounds. The disruption of microalgae cell walls by a four enzyme mixture (Mix) in comparison with the control, enabled to release up to 1.21g/L of reducing sugars (p<0.001), led to an eight-fold increase in oligosaccharides release (p<0.001), and reduced the fuorescence intensity by 47% after staining with Calcofuor White (p<0.001). The Mix treatment was successful in releasing proteins (p<0.001), some MUFA (p<0.05), and the benefcial 18:3n-3 fatty acid (p0.05), total carotenoids were increased in the supernatant (p<0.05) from the Mix treatment, relative to the control. Taken together, these results indicate that this four-enzyme Mix displays an efective capacity to degrade C. vulgaris cell wall. Thus, these enzymes may constitute a good approach to improve the bioavailability of C. vulgaris nutrients for monogastric diets, in particular, and to facilitate the cost-efective use of microalgae by the feed industry, in general.info:eu-repo/semantics/publishedVersio

    Skeletal Muscle Differentiation Evokes Endogenous XIAP to Restrict the Apoptotic Pathway

    Get PDF
    Myotube apoptosis occurs normally during muscle development and aging but it can lead to destruction of skeletal muscle in neuromuscular diseases. Therefore, understanding how myotube apoptosis is regulated is important for developing novel strategies for treatment of muscle loss. We investigated the regulation of apoptosis in skeletal muscle and report a striking increase in resistance to apoptosis following differentiation. We find mitotic C2C12 cells (myoblast-like cells) are sensitive to cytosolic cytochrome c microinjection. However, differentiated C2C12 cells (myotube-like cells) and primary myotubes are markedly resistant. This resistance is due to endogenous X-linked inhibitor of apoptotic protein (XIAP). Importantly, the selective difference in the ability of XIAP to block myotube but not myoblast apoptosis is not due to a change in XIAP but rather a decrease in Apaf-1 expression. This decrease in Apaf-1 links XIAP to caspase activation and death. Our findings suggest that in order for myotubes to die, they may degrade XIAP, functionally inactivate XIAP or upregulate Apaf-1. Importantly, we identify a role for endogenous Smac in overcoming XIAP to allow myotube death. However, in postmitotic cardiomyocytes, where XIAP also restricts apoptosis, endogenous Smac was not capable of overcoming XIAP to cause death. These results show that as skeletal muscle differentiate, they become resistant to apoptosis because of the ability of XIAP to regulate caspase activation. The increased restriction of apoptosis in myotubes is presumably important to ensure the long term survival of these postmitotic cells as they play a vital role in the physiology of organisms
    corecore