23 research outputs found

    Autologous whole ram seminal plasma and its vesicle-free fraction improve motility characteristics and membrane status but not in vivo fertility of frozen-thawed ram spermatozoa

    Get PDF
    Motility characteristics (assessed subjectively and with computer-assisted semen analysis) and membrane status (after staining with chlortetracycline) of washed and non-washed frozen-thawed ram spermatozoa were evaluated after incubation in buffer and buffer containing autologous whole seminal plasma or one of its two fractions: the pellet of membrane vesicles obtained by ultracentrifugation (and used at three times normal protein concentration) or the vesicle-free supernatant fraction. Whole seminal plasma and supernatant, but not membrane vesicles, improved the motility characteristics of spermatozoa after 3 and 6 h of post-thaw incubation compared with the control buffer. Resuspension and incubation with whole seminal plasma, supernatant or membrane vesicles lowered the proportion of acrosome-reacted frozen-thawed spermatozoa compared with the control buffer. Unwashed frozen-thawed semen from three rams, incubated with autologous whole seminal plasma or its fractions and inseminated using cervical or intrauterine artificial insemination, had no effect on pregnancy rates of ewes in synchronized oestrus. However, fertility was higher after laparoscopic than cervical insemination (44.9 vs 12.3%, p < 0.001). In conclusion, resuspension and incubation of frozen-thawed ram spermatozoa in autologous whole seminal plasma or its vesicle-free supernatant fraction improved their motility characteristics and, with membrane vesicles, membrane status, but these benefits were not reflected in improved fertility after cervical or intrauterine insemination. © 2007 The Authors

    Use of RNAlater in fluorescence-activated cell sorting (FACS) reduces the fluorescence from GFP but not from DsRed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flow cytometry utilizes signals from fluorescent markers to separate targeted cell populations for gene expression studies. However, the stress of the FACS process could change normal gene expression profiles. RNAlater could be used to stop such changes in original gene expression profiles through its ability to denature RNase and other proteins. The normal conformational structure of fluorescent proteins must be maintained in order to fluoresce. Whether or not RNAlater would affect signals from different types of intrinsic fluorescent proteins is crucial to its use in flow cytometry; this question has not been investigated in detail.</p> <p>Findings</p> <p>To address this question, we analyzed the effect of RNAlater on fluorescence intensity of GFP, YFP, DsRed and small fluorescent molecules attached to secondary antibodies (Cy2 and Texas-Red) when used in flow cytometry. FACS results were confirmed with fluorescence microscopy. Our results showed that exposure of YFP and GFP containing cells to RNAlater reduces the intensity of their fluorescence to such an extent that separation of such labeled cells is difficult if not impossible. In contrast, signals from DsRed2, Cy2 and Texas-Red were not affected by RNAlater treatment. In addition, the background fluorescence and clumping of dissociated cells are altered by RNAlater treatment.</p> <p>Conclusions</p> <p>When considering gene expression studies using cell sorting with RNAlater, DsRed is the fluorescent protein of choice while GFP/YFP have severe limitations because of their reduced fluorescence. It is necessary to examine the effects of RNAlater on signals from fluorescent markers and the physical properties (e.g., clumping) of the cells before considering its use in cell sorting.</p

    β

    No full text
    corecore