1,941 research outputs found

    Cultural Geography: By Whom, for Whom?

    Get PDF
    Journal of Cultural Geography221147-15

    Google Earth Mapping of Damage from the Niigata-Ken-Chuetsu M6.6 Earthquake of 16 July 2007

    Get PDF
    We describe the use of Google Earth during and after a large damaging earthquake that struck the central Japan coast on 16 July 2007 to collect and organize damage information and guide the reconnaissance activities. This software enabled greater real-time collaboration among scientists and engineers. After the field investigation, the Google Earth map is used as a final reporting product that was directly linked to the more traditional research report document. Finally, we analyze the use of the software within the context of a post-disaster reconnaissance investigation, and link it to student use of Google Earth in field situations

    RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Get PDF
    Background Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans

    Inactivation of SAM-methyltransferase is the mechanism of attenuation of a historic louse borne typhus vaccine strain

    Get PDF
    Louse borne typhus (also called epidemic typhus) was one of man's major scourges, and epidemics of the disease can be reignited when social, economic, or political systems are disrupted. The fear of a bioterrorist attack using the etiologic agent of typhus, Rickettsia prowazekii, was a reality. An attenuated typhus vaccine, R. prowazekii Madrid E strain, was observed to revert to virulence as demonstrated by isolation of the virulent revertant Evir strain from animals which were inoculated with Madrid E strain. The mechanism of the mutation in R. prowazekii that affects the virulence of the vaccine was not known. We sequenced the genome of the virulent revertant Evir strain and compared its genome sequence with the genome sequences of its parental strain, Madrid E. We found that only a single nucleotide in the entire genome was different between the vaccine strain Madrid E and its virulent revertant strain Evir. The mutation is a single nucleotide insertion in the methyltransferase gene (also known as PR028) in the vaccine strain that inactivated the gene. We also confirmed that the vaccine strain E did not cause fever in guinea pigs and the virulent revertant strain Evir caused fever in guinea pigs. We concluded that a single nucleotide insertion in the methyltransferase gene of R. prowazekii attenuated the R. prowazekii vaccine strain E. This suggested that an irreversible insertion or deletion mutation in the methyl transferase gene of R. prowazekii is required for Madrid E to be considered a safe vaccine

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORFā€™s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.

    Signatures of Star-planet interactions

    Full text link
    Planets interact with their host stars through gravity, radiation and magnetic fields, and for those giant planets that orbit their stars within āˆ¼\sim10 stellar radii (āˆ¼\sim0.1 AU for a sun-like star), star-planet interactions (SPI) are observable with a wide variety of photometric, spectroscopic and spectropolarimetric studies. At such close distances, the planet orbits within the sub-alfv\'enic radius of the star in which the transfer of energy and angular momentum between the two bodies is particularly efficient. The magnetic interactions appear as enhanced stellar activity modulated by the planet as it orbits the star rather than only by stellar rotation. These SPI effects are informative for the study of the internal dynamics and atmospheric evolution of exoplanets. The nature of magnetic SPI is modeled to be strongly affected by both the stellar and planetary magnetic fields, possibly influencing the magnetic activity of both, as well as affecting the irradiation and even the migration of the planet and rotational evolution of the star. As phase-resolved observational techniques are applied to a large statistical sample of hot Jupiter systems, extensions to other tightly orbiting stellar systems, such as smaller planets close to M dwarfs become possible. In these systems, star-planet separations of tens of stellar radii begin to coincide with the radiative habitable zone where planetary magnetic fields are likely a necessary condition for surface habitability.Comment: Accepted for publication in the handbook of exoplanet

    A Two-Tiered Correlation of Dark Matter with Missing Transverse Energy: Reconstructing the Lightest Supersymmetric Particle Mass at the LHC

    Get PDF
    We suggest that non-trivial correlations between the dark matter particle mass and collider based probes of missing transverse energy H_T^miss may facilitate a two tiered approach to the initial discovery of supersymmetry and the subsequent reconstruction of the LSP mass at the LHC. These correlations are demonstrated via extensive Monte Carlo simulation of seventeen benchmark models, each sampled at five distinct LHC center-of-mass beam energies, spanning the parameter space of No-Scale F-SU(5).This construction is defined in turn by the union of the Flipped SU(5) Grand Unified Theory, two pairs of hypothetical TeV scale vector-like supersymmetric multiplets with origins in F-theory, and the dynamically established boundary conditions of No-Scale Supergravity. In addition, we consider a control sample comprised of a standard minimal Supergravity benchmark point. Led by a striking similarity between the H_T^miss distribution and the familiar power spectrum of a black body radiator at various temperatures, we implement a broad empirical fit of our simulation against a Poisson distribution ansatz. We advance the resulting fit as a theoretical blueprint for deducing the mass of the LSP, utilizing only the missing transverse energy in a statistical sampling of >= 9 jet events. Cumulative uncertainties central to the method subsist at a satisfactory 12-15% level. The fact that supersymmetric particle spectrum of No-Scale F-SU(5) has thrived the withering onslaught of early LHC data that is steadily decimating the Constrained Minimal Supersymmetric Standard Model and minimal Supergravity parameter spaces is a prime motivation for augmenting more conventional LSP search methodologies with the presently proposed alternative.Comment: JHEP version, 17 pages, 9 Figures, 2 Table
    • ā€¦
    corecore