27 research outputs found

    Causes and risk factors for common mental illnesses : the beliefs of paediatric hospital staff in the United Arab Emirates

    Get PDF
    Background Children and adolescents with chronic physical health conditions are vulnerable to poor mental health outcomes. The measurement of mental health literacy of health professionals working with such populations is important because of their role in promoting early and appropriate help-seeking. This study sought to determine the beliefs regarding the causes of and risks factors for three types of mental illnesses amongst health professionals in United Arab Emirates. Method A culturally validated mental health literacy survey presenting three vignettes of fictional characters meeting diagnostic criteria for posttraumatic stress disorder, depression with suicidal thoughts and psychosis was distributed. The survey measured health care professionals’ beliefs regarding the causes of and risk factors for these disorders. Results A total of 317 health care professional (> 90% nurses) were surveyed from across the UAE. Although 43.8% correctly endorsed exposure to a ‘traumatic event’ as the most likely cause for developing posttraumatic stress disorder, there was a more limited understanding of the contribution of biopsychosocial factors to the development of the mental illness, particularly for psychosis. Participant socio-demographic variables were associated with attributions of religious or spiritual beliefs and personal weakness as causal and/or vulnerability factors in the development of depression with suicidal thoughts and psychosis. Conclusions Efforts to improve mental health systems and health care providers in UAE and other similar Middle Eastern countries requires targeted mental health literacy programs that seek to integrate biopsychosocial models of mental illness and their treatment with the positive aspects of religious and cultural beliefs that are dominant in this region

    Stretching Actin Filaments within Cells Enhances their Affinity for the Myosin II Motor Domain

    Get PDF
    To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli

    Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses

    Get PDF

    Explosive and solitary excitations in a very dense magnetoplasma

    No full text
    A two-component dense magnetoplasma consisting of ions and degenerate electrons is considered. The basic set of hydrodynamic and Poisson equations are reduced to the Zakharov-Kuznetsov (ZK) equation by using the reductive perturbation technique. The basic features of the electrostatic excitations are investigated by applying a new direct method to the ZK equation. It is found that the latter has new solutions, which admit the propagation of either solitary or explosive pulses. The relevance of the new direct method to other nonlinear partial differential equations is also discussed. (Copyright © 2010 Elsevier B.V.

    Three-dimensional nonlinear Schrodinger equation in electron-positron-ion magnetoplasmas

    No full text
    Three-dimensional ion-acoustic envelope soliton excitations in electron-positron-ion magnetoplasmas are interpreted. This is accomplished through the derivation of three-dimensional nonlinear Schrodinger equation, where the nonlinearity is balancing with the dispersive terms. The latter contains both an external magnetic field besides the usual plasma parameter effects. Based on the balance between the nonlinearity and the dispersion terms, the regions for possible envelope solitons are investigated indicating that new regimes for modulational instability of envelope ion-acoustic waves could be obtained, which cannot exist in the unmagnetized case. This will allow us to establish additional new regimes, different from the usual unmagnetized plasma, for envelope ion-acoustic waves to propagate in multicomponent plasma that may be observed in space or astrophysics

    Ionospheric losses of Venus in the solar wind

    No full text
    status: publishe

    Ion escape from the upper ionosphere of Titan triggered by the solar wind

    No full text
    status: publishe
    corecore