181 research outputs found

    Spo0A∼P Imposes a Temporal Gate for the Bimodal Expression of Competence in Bacillus subtilis

    Get PDF
    ComK transcriptionally controls competence for the uptake of transforming DNA in Bacillus subtilis. Only 10%–20% of the cells in a clonal population are randomly selected for competence. Because ComK activates its own promoter, cells exceeding a threshold amount of ComK trigger a positive feedback loop, transitioning to the competence ON state. The transition rate increases to a maximum during the approach to stationary phase and then decreases, with most cells remaining OFF. The average basal rate of comK transcription increases transiently, defining a window of opportunity for transitions and accounting for the heterogeneity of competent populations. We show that as the concentration of the response regulator Spo0A∼P increases during the entry to stationary phase it first induces comK promoter activity and then represses it by direct binding. Spo0A∼P activates by antagonizing the repressor, Rok. This amplifies an inherent increase in basal level comK promoter activity that takes place during the approach to stationary phase and is a general feature of core promoters, serving to couple the probability of competence transitions to growth rate. Competence transitions are thus regulated by growth rate and temporally controlled by the complex mechanisms that govern the formation of Spo0A∼P. On the level of individual cells, the fate-determining noise for competence is intrinsic to the comK promoter. This overall mechanism has been stochastically simulated and shown to be plausible. Thus, a deterministic mechanism modulates an inherently stochastic process

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    The Transcriptional Regulator Rok Binds A+T-Rich DNA and Is Involved in Repression of a Mobile Genetic Element in Bacillus subtilis

    Get PDF
    The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria

    Transcriptional Autoregulatory Loops Are Highly Conserved in Vertebrate Evolution

    Get PDF
    BACKGROUND: Feedback loops are the simplest building blocks of transcriptional regulatory networks and therefore their behavior in the course of evolution is of prime interest. METHODOLOGY: We address the question of enrichment of the number of autoregulatory feedback loops in higher organisms. First, based on predicted autoregulatory binding sites we count the number of autoregulatory loops. We compare it to estimates obtained either by assuming that each (conserved) gene has the same chance to be a target of a given factor or by assuming that each conserved sequence position has an equal chance to be a binding site of the factor. CONCLUSIONS: We demonstrate that the numbers of putative autoregulatory loops conserved between human and fugu, danio or chicken are significantly higher than expected. Moreover we show, that conserved autoregulatory binding sites cluster close to the factors' starts of transcription. We conclude, that transcriptional autoregulatory feedback loops constitute a core transcriptional network motif and their conservation has been maintained in higher vertebrate organism evolution

    Bistability, Probability Transition Rate and First-Passage Time in an Autoactivating Positive-Feedback Loop

    Get PDF
    A hallmark of positive-feedback regulation is bistability, which gives rise to distinct cellular states with high and low expression levels, and that stochasticity in gene expression can cause random transitions between two states, yielding bimodal population distribution (Kaern et al., 2005, Nat Rev Genet 6: 451-464). In this paper, the probability transition rate and first-passage time in an autoactivating positive-feedback loop with bistability are investigated, where the gene expression is assumed to be disturbed by both additive and multiplicative external noises, the bimodality in the stochastic gene expression is due to the bistability, and the bistability determines that the potential of the Fokker-Planck equation has two potential wells. Our main goal is to illustrate how the probability transition rate and first-passage time are affected by the maximum transcriptional rate, the intensities of additive and multiplicative noises, and the correlation of additive and multiplicative noises. Our main results show that (i) the increase of the maximum transcription rate will be useful for maintaining a high gene expression level; (ii) the probability transition rate from one potential well to the other one will increase with the increase of the intensity of additive noise; (iii) the increase of multiplicative noise strength will increase the amount of probability in the left potential well; and (iv) positive (or negative) cross-correlation between additive and multiplicative noises will increase the amount of probability in the left (or right) potential well

    Co-directional replication-transcription conflicts lead to replication restart

    Get PDF
    August 24, 2011Head-on encounters between the replication and transcription machineries on the lagging DNA strand can lead to replication fork arrest and genomic instability1, 2. To avoid head-on encounters, most genes, especially essential and highly transcribed genes, are encoded on the leading strand such that transcription and replication are co-directional. Virtually all bacteria have the highly expressed ribosomal RNA genes co-directional with replication3. In bacteria, co-directional encounters seem inevitable because the rate of replication is about 10–20-fold greater than the rate of transcription. However, these encounters are generally thought to be benign2, 4, 5, 6, 7, 8, 9. Biochemical analyses indicate that head-on encounters10 are more deleterious than co-directional encounters8 and that in both situations, replication resumes without the need for any auxiliary restart proteins, at least in vitro. Here we show that in vivo, co-directional transcription can disrupt replication, leading to the involvement of replication restart proteins. We found that highly transcribed rRNA genes are hotspots for co-directional conflicts between replication and transcription in rapidly growing Bacillus subtilis cells. We observed a transcription-dependent increase in association of the replicative helicase and replication restart proteins where head-on and co-directional conflicts occur. Our results indicate that there are co-directional conflicts between replication and transcription in vivo. Furthermore, in contrast to the findings in vitro, the replication restart machinery is involved in vivo in resolving potentially deleterious encounters due to head-on and co-directional conflicts. These conflicts probably occur in many organisms and at many chromosomal locations and help to explain the presence of important auxiliary proteins involved in replication restart and in helping to clear a path along the DNA for the replisome.Biotechnology and Biological Sciences Research Council (Great Britain) (Grant BB/E006450/1)Wellcome Trust (London, England) (Grant 091968/Z/10/Z)National Institutes of Health (U.S.) (Grant GM41934)National Institutes of Health (U.S.) (Postdoctoral Fellowship GM093408)Biotechnology and Biological Sciences Research Council (Great Britain) (Sabbatical Visit

    Efficacy of exposure versus cognitive therapy in anxiety disorders: systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is growing evidence of the effectiveness of Cognitive Behavioural Therapy (CBT) for a wide range of psychological disorders. There is a continued controversy about whether challenging maladaptive thoughts rather than use of behavioural interventions alone is associated with the greatest efficacy. However little is known about the relative efficacy of various components of CBT. This review aims to compare the relative efficacy of Cognitive Therapy (CT) versus Exposure (E) for a range of anxiety disorders using the most clinically relevant outcome measures and estimating the summary relative efficacy by combining the studies in a meta-analysis.</p> <p>Methods</p> <p>Psych INFO, MEDLINE and EMBASE were searched from the first available year to May 2010. All randomised controlled studies comparing the efficacy of exposure with cognitive therapy were included. Odds ratios (OR) or standardised means' differences (Hedges' g) for the most clinically relevant primary outcomes were calculated. Outcomes of the studies were grouped according to specific disorders and were combined in meta-analyses exploring short-term and long-term outcomes.</p> <p>Results</p> <p>20 Randomised Controlled Trials with (n = 1,308) directly comparing the efficacy of CT and E in anxiety disorders were included in the meta-analysis. No statistically significant difference in the relative efficacy of CT and E was revealed in Post Traumatic Stress Disorder (PTSD), in Obsessive Compulsive Disorder (OCD) and in Panic Disorder (PD). There was a statistically significant difference favouring CT versus E in Social Phobia both in the short-term (Z = 3.72, p = 0.0002) and the long-term (Z = 3.28, p = 0.001) outcomes.</p> <p>Conclusions</p> <p>On the basis of extant literature, there appears to be no evidence of differential efficacy between cognitive therapy and exposure in PD, PTSD and OCD and strong evidence of superior efficacy of cognitive therapy in social phobia</p

    Selective Pressures to Maintain Attachment Site Specificity of Integrative and Conjugative Elements

    Get PDF
    Integrative and conjugative elements (ICEs) are widespread mobile genetic elements that are usually found integrated in bacterial chromosomes. They are important agents of evolution and contribute to the acquisition of new traits, including antibiotic resistances. ICEs can excise from the chromosome and transfer to recipients by conjugation. Many ICEs are site-specific in that they integrate preferentially into a primary attachment site in the bacterial genome. Site-specific ICEs can also integrate into secondary locations, particularly if the primary site is absent. However, little is known about the consequences of integration of ICEs into alternative attachment sites or what drives the apparent maintenance and prevalence of the many ICEs that use a single attachment site. Using ICEBs1, a site-specific ICE from Bacillus subtilis that integrates into a tRNA gene, we found that integration into secondary sites was detrimental to both ICEBs1 and the host cell. Excision of ICEBs1 from secondary sites was impaired either partially or completely, limiting the spread of ICEBs1. Furthermore, induction of ICEBs1 gene expression caused a substantial drop in proliferation and cell viability within three hours. This drop was dependent on rolling circle replication of ICEBs1 that was unable to excise from the chromosome. Together, these detrimental effects provide selective pressure against the survival and dissemination of ICEs that have integrated into alternative sites and may explain the maintenance of site-specific integration for many ICEs.United States. Public Health Service (Grant GM050895

    Positive feedback and noise activate the stringent response regulator Rel in mycobacteria

    Get PDF
    Phenotypic heterogeneity in an isogenic, microbial population enables a subset of the population to persist under stress. In mycobacteria, stresses like nutrient and oxygen deprivation activate the stress response pathway involving the two-component system MprAB and the sigma factor, SigE. SigE in turn activates the expression of the stringent response regulator, rel. The enzyme polyphosphate kinase 1 (PPK1) regulates this pathway by synthesizing polyphosphate required for the activation of MprB. The precise manner in which only a subpopulation of bacterial cells develops persistence, remains unknown. Rel is required for mycobacterial persistence. Here we show that the distribution of rel expression levels in a growing population of mycobacteria is bimodal with two distinct peaks corresponding to low (L) and high (H) expression states, and further establish that a positive feedback loop involving the mprAB operon along with stochastic gene expression are responsible for the phenotypic heterogeneity. Combining single cell analysis by flow cytometry with theoretical modeling, we observe that during growth, noise-driven transitions take a subpopulation of cells from the L to the H state within a "window of opportunity" in time preceding the stationary phase. We find evidence of hysteresis in the expression of rel in response to changing concentrations of PPK1. Our results provide, for the first time, evidence that bistability and stochastic gene expression could be important for the development of "heterogeneity with an advantage" in mycobacteria.Comment: Accepted for publication in PLoS On
    corecore