64 research outputs found

    Symptomatic asymmetry in the first six months of life: differential diagnosis

    Get PDF
    Asymmetry in infancy is a clinical condition with a wide variation in appearances (shape, posture, and movement), etiology, localization, and severity. The prevalence of an asymmetric positional preference is 12% of all newborns during the first six months of life. The asymmetry is either idiopathic or symptomatic. Pediatricians and physiotherapists have to distinguish symptomatic asymmetry (SA) from idiopathic asymmetry (IA) when examining young infants with a positional preference to determine the prognosis and the intervention strategy. The majority of cases will be idiopathic, but the initial presentation of a positional preference might be a symptom of a more serious underlying disorder. The purpose of this review is to synthesize the current information on the incidence of SA, as well as the possible causes and the accompanying signs that differentiate SA from IA. This review presents an overview of the nine most prevalent disorders in infants in their first six months of life leading to SA. We have discovered that the literature does not provide a comprehensive analysis of the incidence, characteristics, signs, and symptoms of SA. Knowledge of the presented clues is important in the clinical decision making with regard to young infants with asymmetry. We recommend to design a valid and useful screening instrument

    A behavioral database for masked form priming

    Get PDF
    Reading involves a process of matching an orthographic input with stored representations in lexical memory. The masked priming paradigm has become a standard tool for investigating this process. Use of existing results from this paradigm can be limited by the precision of the data and the need for cross-experiment comparisons that lack normal experimental controls. Here, we present a single, large, high-precision, multicondition experiment to address these problems. Over 1,000 participants from 14 sites responded to 840 trials involving 28 different types of orthographically related primes (e.g., castfe–CASTLE) in a lexical decision task, as well as completing measures of spelling and vocabulary. The data were indeed highly sensitive to differences between conditions: After correction for multiple comparisons, prime type condition differences of 2.90 ms and above reached significance at the 5% level. This article presents the method of data collection and preliminary findings from these data, which included replications of the most widely agreed-upon differences between prime types, further evidence for systematic individual differences in susceptibility to priming, and new evidence regarding lexical properties associated with a target word’s susceptibility to priming. These analyses will form a basis for the use of these data in quantitative model fitting and evaluation and for future exploration of these data that will inform and motivate new experiments

    Comparison of active treatments for impaired glucose regulation : a Salford Royal Foundation Trust and Hitachi collaboration (CATFISH): study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Diabetes is highly prevalent and contributes to significant morbidity and mortality worldwide. Behaviour change interventions that target health and lifestyle factors associated with the onset of diabetes can delay progression to diabetes, but many approaches rely on intensive one-to-one contact by specialists. Health coaching is an approach based on motivational interviewing that can potentially deliver behaviour change interventions by non-specialists at a larger scale. This trial protocol describes a randomized controlled trial (CATFISH) that tests whether a web-enhanced telephone health coaching intervention (IGR3) is more acceptable and efficient than a telephone-only health coaching intervention (IGR2) for people with prediabetes (impaired glucose regulation). METHODS: CATFISH is a two-parallel group, single-centre individually randomized controlled trial. Eligible participants are patients aged ≥18 years with impaired glucose regulation (HbA1c concentration between 42 and 47 mmol/mol), have access to a telephone and home internet and have been referred to an existing telephone health coaching service at Salford Royal NHS Foundation Trust, Salford, UK. Participants who give written informed consent will be randomized remotely (via a clinical trials unit) to either the existing pathway (IGR2) or the new web-enhanced pathway (IGR3) for 9 months. The primary outcome measure is patient acceptability at 9 months, determined using the Client Satisfaction Questionnaire. Secondary outcome measures at 9 months are: cost of delivery of IGR2 and IGR3, mental health, quality of life, patient activation, self-management, weight (kg), HbA1c concentration, and body mass index. All outcome measures will be analyzed on an intention-to-treat basis. A qualitative process evaluation will explore the experiences of participants and providers with a focus on understanding usability of interventions, mechanisms of behaviour change, and impact of context on delivery and user acceptability. Qualitative data will be analyzed using Framework. DISCUSSION: The CATFISH trial will provide a pragmatic assessment of whether a web-based information technology platform can enhance acceptability of a telephone health coaching intervention for people with prediabetes. The data will prove critical in understanding the role of web applications to improve engagement with evidence-based approaches to preventing diabetes. TRIAL REGISTRATION: ISRCTN16534814 . Registered on 7 February 2016

    Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy

    Get PDF
    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive–compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1–8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative–limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative–limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology

    Balancing the immune response in the brain: IL-10 and its regulation

    Get PDF
    Background: The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology. Main body: The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders. Conclusion: The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.We acknowledge the Portuguese Foundation for Science and Technology (FCT) for providing a PhD grant to DLS (SFRH/BD/88081/2012) and a post-doctoral fellowship to SR (SFRH/BPD/72710/2010). DS, AGC and SR were funded by FEDER through the Competitiveness Factors Operational Programme (COMPETE) and National Funds through FCT under the scope of the project POCI-01-0145-FEDER007038; and by the project NORTE-01-0145-FEDER-000013, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The MS lab was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT in the framework of the project “Institute for Research and Innovation in Health Sciences ” (POCI-01-0145-FEDER-007274). MS is a FCT Associate Investigator. The funding body had no role in the design of the study and collection, analysis, and interpretation of the data and in writing the manuscript

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Can We Optimize Arc Discharge and Laser Ablation for Well-Controlled Carbon Nanotube Synthesis?

    Get PDF
    corecore