125 research outputs found

    The public health value of vaccines beyond efficacy: methods, measures and outcomes.

    Get PDF
    BACKGROUND: Assessments of vaccine efficacy and safety capture only the minimum information needed for regulatory approval, rather than the full public health value of vaccines. Vaccine efficacy provides a measure of proportionate disease reduction, is usually limited to etiologically confirmed disease, and focuses on the direct protection of the vaccinated individual. Herein, we propose a broader scope of methods, measures and outcomes to evaluate the effectiveness and public health impact to be considered for evidence-informed policymaking in both pre- and post-licensure stages. DISCUSSION: Pre-licensure: Regulatory concerns dictate an individually randomised clinical trial. However, some circumstances (such as the West African Ebola epidemic) may require novel designs that could be considered valid for licensure by regulatory agencies. In addition, protocol-defined analytic plans for these studies should include clinical as well as etiologically confirmed endpoints (e.g. all cause hospitalisations, pneumonias, acute gastroenteritis and others as appropriate to the vaccine target), and should include vaccine-preventable disease incidence and 'number needed to vaccinate' as outcomes. Post-licensure: There is a central role for phase IV cluster randomised clinical trials that allows for estimation of population-level vaccine impact, including indirect, total and overall effects. Dynamic models should be prioritised over static models as the constant force of infection assumed in static models will usually underestimate the effectiveness and cost-effectiveness of the immunisation programme by underestimating indirect effects. The economic impact of vaccinations should incorporate health and non-health benefits of vaccination in both the vaccinated and unvaccinated populations, thus allowing for estimation of the net social value of vaccination. CONCLUSIONS: The full benefits of vaccination reach beyond direct prevention of etiologically confirmed disease and often extend across the life course of a vaccinated person, prevent outcomes in the wider community, stabilise health systems, promote health equity, and benefit local and national economies. The degree to which vaccinations provide broad public health benefits is stronger than for other preventive and curative interventions

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter

    Expression Profile of Nuclear Receptors along Male Mouse Nephron Segments Reveals a Link between ERRβ and Thick Ascending Limb Function

    Get PDF
    The nuclear receptor family orchestrates many functions related to reproduction, development, metabolism, and adaptation to the circadian cycle. The majority of these receptors are expressed in the kidney, but their exact quantitative localization in this ultrastructured organ remains poorly described, making it difficult to elucidate the renal function of these receptors. In this report, using quantitative PCR on microdissected mouse renal tubules, we established a detailed quantitative expression map of nuclear receptors along the nephron. This map can serve to identify nuclear receptors with specific localization. Thus, we unexpectedly found that the estrogen-related receptor β (ERRβ) is expressed predominantly in the thick ascending limb (TAL) and, to a much lesser extent, in the distal convoluted tubules. In vivo treatment with an ERR inverse agonist (diethylstilbestrol) showed a link between this receptor family and the expression of the Na+,K+-2Cl− cotransporter type 2 (NKCC2), and resulted in phenotype presenting some similarities with the Bartter syndrom (hypokalemia, urinary Na+ loss and volume contraction). Conversely, stimulation of ERRβ with a selective agonist (GSK4716) in a TAL cell line stimulated NKCC2 expression. All together, these results provide broad information regarding the renal expression of all members of the nuclear receptor family and have allowed us to identify a new regulator of ion transport in the TAL segments

    Potential health risks of complementary alternative medicines in cancer patients

    Get PDF
    Many cancer patients use complementary alternative medicines (CAMs) but may not be aware of the potential risks. There are no studies quantifying such risks, but there is some evidence of patient risk from case reports in the literature. A cross-sectional survey of patients attending the outpatient department at a specialist cancer centre was carried out to establish a pattern of herbal remedy or supplement use and to identify potential adverse side effects or drug interactions with conventional medicines. If potential risks were identified, a health warning was issued by a pharmacist. A total of 318 patients participated in the study. Of these, 164 (51.6%) took CAMs, and 133 different combinations were recorded. Of these, 10.4% only took herbal remedies, 42.1% only supplements and 47.6% a combination of both. In all, 18 (11.0%) reported supplements in higher than recommended doses. Health warnings were issued to 20 (12.2%) patients. Most warnings concerned echinacea in patients with lymphoma. Further warnings were issued for cod liver/fish oil, evening primrose oil, gingko, garlic, ginseng, kava kava and beta-carotene. In conclusion, medical practitioners need to be able to identify the potential risks of CAMs. Equally, patients should be encouraged to disclose their use. Also, more research is needed to quantify the actual health risks

    Protein quality control: the who’s who, the where’s and therapeutic escapes

    Get PDF
    In cells the quality of newly synthesized proteins is monitored in regard to proper folding and correct assembly in the early secretory pathway, the cytosol and the nucleoplasm. Proteins recognized as non-native in the ER will be removed and degraded by a process termed ERAD. ERAD of aberrant proteins is accompanied by various changes of cellular organelles and results in protein folding diseases. This review focuses on how the immunocytochemical labeling and electron microscopic analyses have helped to disclose the in situ subcellular distribution pattern of some of the key machinery proteins of the cellular protein quality control, the organelle changes due to the presence of misfolded proteins, and the efficiency of synthetic chaperones to rescue disease-causing trafficking defects of aberrant proteins

    Edaravone Guards Dopamine Neurons in a Rotenone Model for Parkinson's Disease

    Get PDF
    3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), an effective free radical scavenger, provides neuroprotection in stroke models and patients. In this study, we investigated its neuroprotective effects in a chronic rotenone rat model for Parkinson's disease. Here we showed that a five-week treatment with edaravone abolished rotenone's activity to induce catalepsy, damage mitochondria and degenerate dopamine neurons in the midbrain of rotenone-treated rats. This abolishment was attributable at least partly to edaravone's inhibition of rotenone-induced reactive oxygen species production or apoptotic promoter Bax expression and its up-regulation of the vesicular monoamine transporter 2 (VMAT2) expression. Collectively, edaravone may provide novel clinical therapeutics for PD

    A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress

    Get PDF
    Cisplatin and its platinum analogs, carboplatin and oxaliplatin, are some of the most widely used cancer chemotherapeutics. Although cisplatin and carboplatin are used primarily in germ cell, breast and lung malignancies, oxaliplatin is instead used almost exclusively to treat colorectal and other gastrointestinal cancers. Here we utilize a unique, multi-platform genetic approach to study the mechanism of action of these clinically established platinum anti-cancer agents, as well as more recently developed cisplatin analogs. We show that oxaliplatin, unlike cisplatin and carboplatin, does not kill cells through the DNA-damage response. Rather, oxaliplatin kills cells by inducing ribosome biogenesis stress. This difference in drug mechanism explains the distinct clinical implementation of oxaliplatin relative to cisplatin, and it might enable mechanistically informed selection of distinct platinum drugs for distinct malignancies. These data highlight the functional diversity of core components of front-line cancer therapy and the potential benefits of applying a mechanism-based rationale to the use of our current arsenal of anti-cancer drugs

    MLL-fusion-driven leukemia requires SETD2 to safeguard genomic integrity

    Get PDF
    MLL-fusions represent a large group of leukemia drivers, whose diversity originates from the vast molecular heterogeneity of C-terminal fusion partners of MLL. While studies of selected MLL-fusions have revealed critical molecular pathways, unifying mechanisms across all MLL-fusions remain poorly understood. We present the first comprehensive survey of protein-protein interactions of seven distantly related MLL-fusion proteins. Functional investigation of 128 conserved MLL-fusion-interactors identifies a specific role for the lysine methyltransferase SETD2 in MLL-leukemia. SETD2 loss causes growth arrest and differentiation of AML cells, and leads to increased DNA damage. In addition to its role in H3K36 tri-methylation, SETD2 is required to maintain high H3K79 di-methylation and MLL-AF9-binding to critical target genes, such as Hoxa9. SETD2 loss synergizes with pharmacologic inhibition of the H3K79 methyltransferase DOT1L to induce DNA damage, growth arrest, differentiation, and apoptosis. These results uncover a dependency for SETD2 during MLL-leukemogenesis, revealing a novel actionable vulnerability in this disease

    The Ischemic Stroke Genetics Study (ISGS) Protocol

    Get PDF
    BACKGROUND: The molecular basis for the genetic risk of ischemic stroke is likely to be multigenic and influenced by environmental factors. Several small case-control studies have suggested associations between ischemic stroke and polymorphisms of genes that code for coagulation cascade proteins and platelet receptors. Our aim is to investigate potential associations between hemostatic gene polymorphisms and ischemic stroke, with particular emphasis on detailed characterization of the phenotype. METHODS/DESIGN: The Ischemic Stroke Genetic Study is a prospective, multicenter genetic association study in adults with recent first-ever ischemic stroke confirmed with computed tomography or magnetic resonance imaging. Patients are evaluated at academic medical centers in the United States and compared with sex- and age-matched controls. Stroke subtypes are determined by central blinded adjudication using standardized, validated mechanistic and syndromic classification systems. The panel of genes to be tested for polymorphisms includes β-fibrinogen and platelet glycoprotein Ia, Iba, and IIb/IIIa. Immortalized cell lines are created to allow for time- and cost-efficient testing of additional candidate genes in the future. DISCUSSION: The study is designed to minimize survival bias and to allow for exploring associations between specific polymorphisms and individual subtypes of ischemic stroke. The data set will also permit the study of genetic determinants of stroke outcome. Having cell lines will permit testing of future candidate risk factor genes

    Conductivity/activation energy relationships for cement-based materials undergoing cyclic thermal excursions

    Get PDF
    The electrical conductivity of a range of concrete mixes, with and without supplementary cementitious materials (SCM), is studied through multiple cycles of heating and cooling over the extended temperature range -30/?70 C. When presented in an Arrhenius format, the experimental results display hysteresis effects at the lowtemperature end of the thermal cycle and, in those concretes containing supplementary cementitious materials at higher water/binder ratios, hysteresis effects were evident over the entire temperature range becoming more discernible with increasing number of thermal cycles. The depression in both the freezing and thawing point could be clearly identified and was used to estimate pore-neck and pore-cavity radii. A simplified approach is presented to evaluate the volumetric ratio of frozen pore water in terms of conductivity measurements. The results also show that the conductivity and activation energy of the concrete specimens were related to the water/binder ratio, type of SCM, physical state of the pore water and the thermal cycling regime
    corecore