608 research outputs found

    PubMed related articles: a probabilistic topic-based model for content similarity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present a probabilistic topic-based model for content similarity called <it>pmra </it>that underlies the related article search feature in PubMed. Whether or not a document is about a particular topic is computed from term frequencies, modeled as Poisson distributions. Unlike previous probabilistic retrieval models, we do not attempt to estimate relevance–but rather our focus is "relatedness", the probability that a user would want to examine a particular document given known interest in another. We also describe a novel technique for estimating parameters that does not require human relevance judgments; instead, the process is based on the existence of MeSH <sup>® </sup>in MEDLINE <sup>®</sup>.</p> <p>Results</p> <p>The <it>pmra </it>retrieval model was compared against <it>bm25</it>, a competitive probabilistic model that shares theoretical similarities. Experiments using the test collection from the TREC 2005 genomics track shows a small but statistically significant improvement of <it>pmra </it>over <it>bm25 </it>in terms of precision.</p> <p>Conclusion</p> <p>Our experiments suggest that the <it>pmra </it>model provides an effective ranking algorithm for related article search.</p

    Ab initio prediction of Boron compounds arising from Borozene: Structural and electronic properties

    Get PDF
    Structure and electronic properties of two unusual boron clusters obtained by fusion of borozene rings has been studied by means of first principles calculations, based on the generalized-gradient approximation of the density functional theory, and the semiempirical tight-binding method was used for the transport calculations. The role of disorder has also been considered with single vacancies and substitutional atoms. Results show that the pure boron clusters are topologically planar and characterized by (3c-2e) bonds, which can explain, together with the aromaticity (estimated by means of NICS), the remarkable cohesive energy values obtained. Such feature makes these systems competitive with the most stable boron clusters to date. On the contrary, the introduction of impurities compromises stability and planarity in both cases. The energy gap values indicate that these clusters possess a semiconducting character, while when the larger system is considered, zero-values of the density of states are found exclusively within the HOMO-LUMO gap. Electron transport calculations within the Landauer formalism confirm these indications, showing semiconductor-like low bias differential conductance for these stuctures. Differences and similarities with Carbon clusters are highlighted in the discussion.Comment: 10 pages, 2 tables, 5 figure

    Krüppel-Like Factor 8 Is a New Wnt/Beta-Catenin Signaling Target Gene and Regulator in Hepatocellular Carcinoma

    Get PDF
    Krüppel-like factor 8 (KLF8) plays important role in cell cycle and oncogenic transformation. Here we report the mechanisms by which KLF8 crosstalks with Wnt/β-catenin signaling pathway and regulates hepatocellular carcinoma (HCC) cells proliferation. We show that overexpression of KLF8 and nucleus accumulation of β-catenin in the human HCC samples are positively correlated. More importantly, KLF8 protein levels plus nucleus accumulation of β-catenin levels were significantly elevated in high-grade HCC compared to low-grade HCC. Using HCC HepG2 cells we find that, on the one hand both protein and mRNA of KLF8 are up-regulated under Wnt3a stimulation, on the other hand overexpression of KLF8 increases the cytoplasm and nucleus accumulation of β-catenin, recruits p300 to β-catenin/T-cell factor 4 (TCF4) transcription complex, enhances TOP flash report gene transcription, and induces Wnt/β-catenin signaling target genes c-Myc, cyclin D1 and Axin1 expression. Knockdown of KLF8 using shRNA inhibits Wnt3a induced transcription of TOP flash report gene and expression of c-Myc, cyclin D1 and Axin1. Knockdown of β-catenin by shRNA rescues the enhanced HepG2 and Hep3B cells proliferation ability induced by overexpression of KLF8

    Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms

    Get PDF
    Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands-yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10-36), SULT2A1 (rs2637125; p = 2.61×10-19), ARPC1A (rs740160; p = 1.56×10-16), TRIM4 (rs17277546; p = 4.50×10-11), BMF (rs7181230; p = 5.44×10-11), HHEX (rs2497306; p = 4.64×10-9), BCL2L11 (rs6738028; p = 1.72×10-8), and CYP2C9 (rs2185570; p = 2.29×10-8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS

    Coevolution of Interacting Fertilization Proteins

    Get PDF
    Reproductive proteins are among the fastest evolving in the proteome, often due to the consequences of positive selection, and their rapid evolution is frequently attributed to a coevolutionary process between interacting female and male proteins. Such a process could leave characteristic signatures at coevolving genes. One signature of coevolution, predicted by sexual selection theory, is an association of alleles between the two genes. Another predicted signature is a correlation of evolutionary rates during divergence due to compensatory evolution. We studied female–male coevolution in the abalone by resequencing sperm lysin and its interacting egg coat protein, VERL, in populations of two species. As predicted, we found intergenic linkage disequilibrium between lysin and VERL, despite our demonstration that they are not physically linked. This finding supports a central prediction of sexual selection using actual genotypes, that of an association between a male trait and its female preference locus. We also created a novel likelihood method to show that lysin and VERL have experienced correlated rates of evolution. These two signatures of coevolution can provide statistical rigor to hypotheses of coevolution and could be exploited for identifying coevolving proteins a priori. We also present polymorphism-based evidence for positive selection and implicate recent selective events at the specific structural regions of lysin and VERL responsible for their species-specific interaction. Finally, we observed deep subdivision between VERL alleles in one species, which matches a theoretical prediction of sexual conflict. Thus, abalone fertilization proteins illustrate how coevolution can lead to reproductive barriers and potentially drive speciation

    Developmental axon pruning mediated by BDNF-p75NTR–dependent axon degeneration

    Get PDF
    The mechanisms that regulate the pruning of mammalian axons are just now being elucidated. Here, we describe a mechanism by which, during developmental sympathetic axon competition, winning axons secrete brain-derived neurotrophic factor (BDNF) in an activity-dependent fashion, which binds to the p75 neurotrophin receptor (p75NTR) on losing axons to cause their degeneration and, ultimately, axon pruning. Specifically, we found that pruning of rat and mouse sympathetic axons that project to the eye requires both activity-dependent BDNF and p75NTR. p75NTR and BDNF are also essential for activity-dependent axon pruning in culture, where they mediate pruning by directly causing axon degeneration. p75NTR, which is enriched in losing axons, causes axonal degeneration by suppressing TrkA-mediated signaling that is essential for axonal maintenance. These data provide a mechanism that explains how active axons can eliminate less-active, competing axons during developmental pruning by directly promoting p75NTR-mediated axonal degeneration

    MicroRNA Expression Variability in Human Cervical Tissues

    Get PDF
    MicroRNAs (miRNAs) are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Deregulation of miRNA expression has been discovered in a wide variety of tumours and it is now clear that they contribute to cancer development and progression. Cervical cancer is one of the most common cancers in women worldwide and there is a strong need for a non-invasive, fast and efficient method to diagnose the disease. We investigated miRNA expression profiles in cervical cancer using a microarray platform containing probes for mature miRNAs. We have evaluated miRNA expression profiles of a heterogeneous set of cervical tissues from 25 different patients. This set included 19 normal cervical tissues, 4 squamous cell carcinoma, 5 high-grade squamous intraepithelial lesion (HSIL) and 9 low-grade squamous intraepithelial lesion (LSIL) samples. We observed high variability in miRNA expression especially among normal cervical samples, which prevented us from obtaining a unique miRNA expression signature for this tumour type. However, deregulated miRNAs were identified in malignant and pre-malignant cervical tissues after tackling the high expression variability observed. We were also able to identify putative target genes of relevant candidate miRNAs. Our results show that miRNA expression shows natural variability among human samples, which complicates miRNA data profiling analysis. However, such expression noise can be filtered and does not prevent the identification of deregulated miRNAs that play a role in the malignant transformation of cervical squamous cells. Deregulated miRNAs highlight new candidate gene targets allowing for a better understanding of the molecular mechanism underlying the development of this tumour type

    Two Evolutionary Histories in the Genome of Rice: the Roles of Domestication Genes

    Get PDF
    Genealogical patterns in different genomic regions may be different due to the joint influence of gene flow and selection. The existence of two subspecies of cultivated rice provides a unique opportunity for analyzing these effects during domestication. We chose 66 accessions from the three rice taxa (about 22 each from Oryza sativa indica, O. sativa japonica, and O. rufipogon) for whole-genome sequencing. In the search for the signature of selection, we focus on low diversity regions (LDRs) shared by both cultivars. We found that the genealogical histories of these overlapping LDRs are distinct from the genomic background. While indica and japonica genomes generally appear to be of independent origin, many overlapping LDRs may have originated only once, as a result of selection and subsequent introgression. Interestingly, many such LDRs contain only one candidate gene of rice domestication, and several known domestication genes have indeed been “rediscovered” by this approach. In summary, we identified 13 additional candidate genes of domestication
    corecore