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Abstract

Low-temperature Bi-Nb-O system photocatalysts were prepared by a citrate method using homemade water-
soluble niobium precursors. The structures, morphologies, and optical properties of Bi-Nb-O system photocatalysts
with different compositions were investigated deeply. All the Bi-Nb-O powders exhibit appreciably much higher
photocatalytic efficiency of photo-degradation of methyl violet (MV), especially for Bi-Nb-O photocatalysts sintered
at 750 °C (BNO750), only 1.5 h to completely decompose MV, and the obtained first-order rate constant (k) is 1.94/h.
A larger degradation rate of Bi-Nb-O photocatalysts sintered at 550 °C (BNO550) can be attributed to the synergistic
effect between β-BiNbO4 and Bi5Nb3O15. Bi5Nb3O15 with small particle size on β-BiNbO4 surface can effectively short
the diffuse length of electron. BNO750 exhibits the best photocatalytic properties under visible-light irradiation,
which can be attributed to its better crystallinity and the synergistic effect between β-BiNbO4 and α-BiNbO4. The
small amount of α-BiNbO4 loading on surface of β-BiNbO4 can effectively improve the electron and hole
segregation and migration. Holes are the main active species of Bi-Nb-O system photocatalysts in aqueous solution
under visible-light irradiation.
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Background
Recent years, much attention has been focused on the en-
vironmental remediation due to the increasing pollution
problems caused by the industries. Organic pollutants,
particularly dyes, have a deleterious effect on human
health [1]. In 1972, photosensitized decomposition of
water into H2 and O2 using TiO2 semiconductor electrode
was first reported by Fujishima and Honda [2]. Since then,
a large number of semiconductor materials have been
investigated as active catalysts for the reduction and/or
elimination of environmental pollution in water and air
due to their potential in the conversion of light energy.
TiO2, as one of the most popular photocatalysts, can
solely absorb the UV light, which accounts for only 4 % of
the total sunlight. It greatly inhibits its practical

applications for the decomposition of toxic and hazardous
organic pollutants. Hence, it is very necessary to develop
photocatalysts with high catalytic activities under the vis-
ible light. Currently, numerous strategies, such as doping
[3–5], dye sensitization [6, 7], and growths of TiO2-based
heterostructures [8, 9], have been developed, aiming to
promote their photo-response performance to the visible
range. Besides, other novel photocatalysts with outstand-
ing visible-light photocatalytic properties have been devel-
oped, such as quantum dot-based photocatalysts [10–14].
Bismuth-based photocatalysts, due to their excellent

photo-degradation performance for organic contaminant
using visible light, have attracted much attention, such
as BiWO6 [15], BiOX (X = Cl, Br, I) [16, 17], Bi2O2CO3

[18], BiNb3O15 [19], and BiNbO4 [20–25]. Among these
materials, BiNbO4 is investigated for H2 generation and
contaminant degradation under visible light, exhibiting
greater photocatalytic performance than TiO2. In gen-
eral, BiNbO4 has orthorhombic α and triclinic β phases;
α phase synthesized at 900 °C irreversibly transforms to
the high-temperature β phase (denoted as High-β) at
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1020 °C [26]. Compared with β phase, the α phase
always shows better photocatalytic performance due to
the formation of a narrow conducting band and the
electron and holes can effectively reach reaction sites on
the surface in orthorhombic structure [27]. While in our
former work, we first synthesized the pure low-
temperature β phase (denoted as Low-β) at 700 °C and
the visible-light photocatalytic performance test shows
that the Low-β exhibits better photocatalytic efficiency
compared with α phase [20, 28]. The formation of pure
triclinic phase of BiNbO4 at low temperature can be at-
tributed to the formation of intermediate Bi5Nb3O15

phase.
Compared with BiNbO4, the research of Bi5Nb3O15 as

photocatalyst is rare, though it is expected to have high
photocatalytic efficiency due to the composition of the
conduction band (CB) and valance band (VB) same as
BiNbO4 [29]. Because of the volatilization of Bi element
at high temperature, the conventional solid state method
requires critical control of Bi content to obtain stoichio-
metric Bi-Nb-O compounds; also, the resulting bulk
products of several micrometers are harmful to efficient
electronic diffusion, which inhibits the research and ap-
plications of Bi-Nb-O system photocatalysts. Citrate
method, a simple way to obtain stable precursors and re-
active, stoichiometric fine powders, has been widely used
in the fabrication of various complicated oxides [30].
In this paper, low-temperature Bi-Nb-O system photo-

catalysts were prepared by the citrate method using home-
made water-soluble niobium precursors. The structures,
morphologies, optical properties of Bi-Nb-O system
photocatalysts with different composition were investi-
gated deeply. The visible-light photocatalytic properties
were evaluated with the degradation of methyl violet
(MV) under visible light irradiation. The synergistic effect
between different compositions in Bi-Nb-O system was
also proposed to explain the efficient visible-light photo-
catalytic properties.

Methods
Catalysts Preparation
Bismuth nitrate (Bi(NO3)3·5H2O), citric acid (CA),
ammonia (NH3·H2O), and Nb-citrate (Nb-CA) aqueous
solution were used as starting materials. The synthesis of
water-soluble Nb-CA has been described in details in
our previous work [31]. The Bi-Nb-O powders were pre-
pared using the citrate method. Bi(NO3)3·5H2O was first
dissolved in Nb-CA aqueous solution, followed by
addition of CA. Then the solution was kept stirring at
60 °C, using ammonia to adjust the pH value to 7~8.
Finally, the stable and transparent precursor solution
was dried at 180 °C and then sintered at various temper-
atures from 500 to 800 °C for 3 h to obtain the Bi-Nb-O
powders.

Characterization
The structures of the Bi-Nb-O powders were character-
ized by X-ray diffraction (XRD; Rigaku-D/Max 2000)
using Cu Kα radiation. The scanning electron microscope
(SEM; JSM-6700F) and transmission electron microscope
(TEM; Tecnai F20 S-Twin, FEI) were used to examine the
morphologies and grain sizes of the powders. The specific
surface area was measured on a surface area apparatus
(Micromeritics TriStar 3000, Shamidzu) at 77 K by N2

adsorption/desorption method (BET method). The photo-
luminescence (PL) spectra were detected using an F-280
fluorescence spectrophotometer with excitation wave-
length of 320 nm. X-ray photoelectron spectroscopy
(XPS) analysis was performed on Thermo Fisher K-Alpha
equipment.

Catalytic Tests
To evaluate the visible-light photocatalytic activities of
Bi-Nb-O powders, the decomposition reaction of MV
aqueous solution was carried out under irradiation of a
150-W Xe lamp (LA-410UV-3, Hayashi, Japan) at the
natural pH value. The details have been described in the
previous work and the photo-degradation process was
monitored by an ultraviolet-visible near infrared (UV-
vis-NIR) spectrophotometer (UV-3600, Shimadzu, Japan)
[20]. The concentration of the residual MV in solution
was determined as a function of irradiation time by
measuring the maximum absorption at 582 nm.
To detect the active species during photocatalytic re-

activity, hydroxyl radicals (·OH) and holes (h+) were in-
vestigated by adding 5 mM tert-butyl alcohol (t-BuOH; a
quencher of ·OH) and EDTA-2Na (a quencher of h+)
[32]. The method was similar to the former photocata-
lytic activity test with 30-min visible-light irradiation.

Results and Discussion
Figure 1 shows the XRD patterns of Bi-Nb-O precursors
sintered at different temperatures. At 500 °C, Bi5Nb3O15

appears as the major phase with other Bi-Nb-O com-
pounds. With the sintering temperature increasing to
550 °C, most of the Bi5Nb3O15 decomposes and Low-β
forms as the major phase. At 600 and 650 °C, only small
amount of Bi5Nb3O15 remains. Pure β phase BiNbO4 is
obtained at 700 °C; while with the further increase of
temperature, α phase BiNbO4 forms and coexists with β
phase even at 800 °C. The formation mechanism of
Low-β and the phase transition from Low-β to α phase
has been deeply discussed in our former work [28]. To
concisely study the Bi-Nb-O system, the Bi-Nb-O photo-
catalysts prepared at 500, 550, 600, 650, 700, 750, and
800 °C were denoted as BNO500, BNO550, BNO600,
BNO650, BNO700, BNO750, and BNO800 below,
respectively.
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The TEM images of Bi-Nb-O powders sintered at dif-
ferent temperatures are given in Fig. 2. As seen in the
figure, the higher the sintering temperature, the larger
the grain size becomes. For BNO500, the grain size is
about 30–40 nm, while for BNO800, it is about 300 nm;
also, the shape of Bi-Nb-O powders seems irregular.
Table 1 summarizes the grain size and specific areas of
Bi-Nb-O powders sintered at various temperatures. The
specific areas of the Bi-Nb-O powders are comparable
with each other, except for BNO800 with the largest
grain size. For BNO700, the specific surface area is
12.2 m2/g. It seems that the Bi-Nb-O powders prepared

by the citrate method show larger specific surface area
than other groups’ results [33].
Figure 3 shows the UV-vis diffuse reflectance absorb-

ance spectra of Bi-Nb-O powders. The absorbance coef-
ficient (α) is transformed from the diffuse reflection
spectra based on the Kubelka-Munk (K-M) theory using
pressed BaSO4 powders as a reference. The relation be-
tween the absorption edge and the incident photon (hv)
can be written as follows:

αhv ¼ A hv−Eg
� �n ð1Þ

where A is the band edge constant and n is an index
which assumes the values 1/2 and 2 for direct allowed and
indirect allowed transitions, respectively. Because Low-β as
the major phase in Bi-Nb-O system is the indirect band
gap semiconductor, the value of n is taken as 2. The energy
band gaps of Bi-Nb-O powders are estimated, as listed in
Table 1. The energy band gap is consistent with that ob-
tained using density functional theory computation [34].
The band gaps of Bi-Nb-O powders suggest all of them
have the visible-light photocatalytic performance through
direct photo-absorption, and the critical absorbance wave-
length is above 400 nm. The color of the powders is pale
yellow, which is consistent with the band gaps.
The photocatalytic activities of Bi-Nb-O powders are

evaluated via photo-degradation of MV under visible-
light irradiation, as shown in Fig. 4. In the experiment,
the degradation of MV without photocatalyst is also
studied as a reference. The dashed line in Fig. 4 repre-
sents the MV concentration after adsorption/desorption

Fig. 1 XRD patterns of Bi-Nb-O powders sintered at different
temperatures for 3 h. ICSD pattern of β-BiNbO4 (JCPDF, No. 16-0486) is
also inserted

Fig. 2 TEM images of Bi-Nb-O powders sintered at a 500 °C, b 550 °C, c 600 °C, d 650 °C, e 700 °C, f 750 °C, and g 800 °C for 3 h
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equilibrium. All the Bi-Nb-O powders show good adsorp-
tion ability, about 16 % for most catalysts except for
BNO500 and BNO800 with 9 %. The adsorption ability of
MV is an important factor to decompose MV in the
photo-degradation process. Compared with the degrad-
ation of MV without catalyst, all the Bi-Nb-O powders
exhibit appreciably much higher photocatalytic efficiency of
photo-degradation of MV, especially for BNO750, only
1.5 h to completely decompose MV. It shows that low-
temperature Bi-Nb-O photocatalysts have efficient visible-
light photo-degradation properties. For Bi-Nb-O photocata-
lysts, the degradation mechanism of MV under visible-light
irradiation involves photocatalytic and photosensitization
pathways, and the latter has a dominant role in the degrad-
ation [20]. They can not only absorb the visible light with
the wavelength short enough to activate the electron and
hole segregation directly but also use the visible light indir-
ectly with the absorbed MV molecules acting as antennae
on photocatalysts to absorb the light. The photocatalytic
efficiency of Bi-Nb-O catalysts is ranked in an order from
the highest to the lowest: BNO750 > BNO700 > BNO550 >
BNO650 > BNO800 > BNO500 > BNO600. Interestingly,
there exist two peaks in Bi-Nb-O system. BNO550 shows a
larger degradation rate than BNO500, BNO600, and
BNO650; at the same time, BNO750 has the best degrad-
ation properties than others.
For the photo-degradation of MV, it is found that the

degradation using Bi-Nb-O catalysts obeys the pseudo-

first-order kinetics, described by the modified Langmuir-
Hinshelwood kinetics model [35]. The representation is
given as follows:

ln C0=Cð Þ ¼ kt ð2Þ

where C is the concentration of MV solution, t is the
reaction time, and k is the constant of the pseudo-first-
order rate. Plots of ln(C0/C) versus irradiation time for
the degradation of MV using BNO550, BNO600, and
BNO750 as catalysts is shown in Fig. 5. The obtained
first-order rate constants (k) are 1.94, 1.02, and 2.77/h;
the apparent rate constant of BNO750 is about 2.7 times
higher than that of BNO600. So the degradation rate of
MV with BNO750 is much higher than that with
BNO600.
As for Bi-Nb-O compounds, no matter Bi5Nb3O15 or

α, β phase BiNbO4, their electronic structures are com-
posed of VB by O 2p state and CB by hybridization
states of Bi 4p, Nb 4d, and O 2p [36]. In other group’s
research, Bi5Nb3O15 powder with a small size has higher
photocatalytic activity than P25 and bulk α phase
BiNbO4, due to short diffuse length of electron and effi-
cient visible-light harvesting [19]. In our Bi-Nb-O sys-
tem, Bi5Nb3O15 phase was first formed with a smaller
particle size at 500 °C. With the sintering temperature

Table 1 The grain sizes, specific surface areas, and UV-vis absorption data of Bi-Nb-O powders sintered at different temperatures

Catalysts BNO500 BNO550 BNO600 BNO650 BNO700 BNO750 BNO800

Grain size (nm) 30~40 ~60 70~80 ~100 100~200 ~200 300~400

Specific surface areas (m2/g) 9.7 11.2 10.5 10.3 12.2 11.6 7.9

Band gap (eV) 2.88 2.83 2.89 2.88 2.78 2.88 2.91

λa (nm) 431 439 429 431 447 431 427
aMaximum absorptive wavelength is estimated from the intercept of the tangents to the plots

Fig. 3 UV-vis diffuse reflectance absorbance spectra of Bi-Nb-O powders

Fig. 4 Photo-degradation of MV with respect to the irradiation time
using Bi-Nb-O powders exposed to visible light. Adsorption ability of
Bi-Nb-O powders is tested after stirring for 1 h in the absence of
light to achieve the equilibrium adsorption
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increase, the major phase Bi5Nb3O15 decompose, which
results in Low-β phase BiNbO4 coexisting with a smaller
amount of Bi5Nb3O15 particles in BNO550. The better
photocatalytic property of BNO550 can be attributed to
the synergistic effect between β-BiNbO4 and Bi5Nb3O15.
Bi5Nb3O15 with a smaller particle size on β-BiNbO4

surface can effectively short the diffuse length of elec-
tron, subsequently decreasing the recombination rate of
electrons and holes. When the sintering temperature is
above 600 °C, the content of Bi5Nb3O15 is negligible and
the photocatalytic properties are mainly from Low-β
phase BiNbO4.
Compared with the High-β, the crystal evolution of

Low-β has not completed yet. The photocatalytic prop-
erties are promoted with the sintering temperature,
which means better grain crystallinity. As in Fig. 4, the
adsorption test in “dark” shows that the adsorption abil-
ity is nearly the same for BNO powders sintered between
600 and 750 °C. So the improved grain crystallinity has
the dominant role in the promotion of photocatalytic
properties. As the sintering temperature increase to
750 °C, the major phase is Low-β phase BiNbO4 coexists
with a smaller amount of α phase BiNbO4. For BNO800,
the content of α phase increases and the adsorption abil-
ity decreases, as shown in Fig. 4. As described in our
former work, Low-β phase BiNbO4 prepared by the cit-
rate method has better photocatalytic performance than
α phase BiNbO4 [20]. BNO750 having the best photo-
catalytic properties under visible light may be attributed
to two aspects: one is the better crystallinity and the
other is the synergistic effect between Low-β phase
BiNbO4 and α phase BiNbO4. Compared with β phase,
the α phase with [NbO4] chains favors the formation of
a narrow conducting band and the electrons and holes
can effectively reach reaction sites of photocatalysts [27].
For BNO750, the small amount of α phase BiNbO4

loading on the surface of Low-β phase BiNbO4 can ef-
fectively improve the electron and hole segregation and
migration. So BNO750 exhibits the best visible-light
photocatalytic properties in low-temperature Bi-Nb-O
system photocatalysts.
The better separation of photo-generated electrons

and holes in BNO550 and BNO750 catalysts is con-
firmed by PL spectra, as shown in Fig. 6. As we know,
PL emission spectra mainly result from the recombin-
ation of free carriers; therefore, PL spectra measurement
is an effective method to survey the separation efficiency
of the photo-generated charge carriers in semiconduc-
tors [37]. It can be seen that compared with BNO600,
BNO550 and BNO750 have smaller emitting peaks
around 468 nm, which means they have longer charge
carriers lifetime and improved efficiency of interfacial
charge transfer, and then enhanced photocatalytic activ-
ity, well consistent with Fig. 4.
As discussed above, BNO750 exhibits the best photo-

catalytic performance among low-temperature Bi-Nb-O
system photocatalysts. The morphology of BNO750
powders is investigated using SEM, as shown in Fig. 7. It
can be seen that BNO750 powders is porous and the
particles connect with each other to form strips, which
can be regarded as a honeycomb structure. The honey-
comb structure is beneficial to photo-degradation of MV
due to large specific areas.
The chemical component of BNO750 catalyst is charac-

terized using XPS, as shown in Fig. 8. The peaks at 164.33
and 159.03 eV correspond to Bi4f5/2 and Bi4f7/2, respect-
ively, and these peaks confirm the presence of Bi3+ in
BNO750 lattice. At the same time, the peaks of Nb3d3/2
and Nb3d5/2 in Fig. 8b confirm the presence of Nb5+.
There is no other valence state observed in Fig. 8, which

Fig. 5 Kinetic fit for the photo-degradation of MV in the presence of
BNO550, BNO600 and BNO750 powders, respectively

Fig. 6 Room temperature PL spectra of BNO550, BNO600, and
BNO750 catalysts

Zhai et al. Nanoscale Research Letters  (2016) 11:383 Page 5 of 8



means no metallic bismuth or reduced Nb oxide species
formed in BNO750 [23].
Figure 9 displays the trapping experiment of active

species during the photocatalytic reaction process with
BNO750 catalysts. It can be seen that the degradation of
MV is not affected by the addition of t-BuOH, while the
degradation rate lowers obviously with the addition of
EDTA-2Na. Therefore, it can be concluded that holes
are the main active species of Bi-Nb-O system photoca-
talysts in aqueous solution under visible-light irradiation,
rather than ·OH.
The effect of operating parameters such as the amount

of catalyst loading, pH value, and the additive H2O2 con-
centration on the photocatalytic performance of low-
temperature Bi-Nb-O photocatalysts has been investigated

also, similar to that of pure Low-β phase BiNbO4 de-
scribed in our former work [20]. It shows that the optimal
operation conditions are catalyst loading of 1 g/L, pH
value of 8, and the additive H2O2 concentration of
2 mmol/L.

Conclusions
Bi-Nb-O system photocatalysts were prepared by the cit-
rate method using homemade water-soluble niobium
precursors. The structures, morphologies, and optical
properties of Bi-Nb-O system photocatalysts with different
compositions were investigated deeply. All the Bi-Nb-O
powders exhibit appreciably much higher photocatalytic
efficiency of photo-degradation of MV, especially for
BNO750, only 1.5 h to completely decompose MV, and

Fig. 7 SEM images of BNO750 with magnifications of a ×5000 and b ×20,000
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the obtained k is 1.94/h. Larger degradation rate of
BNO550 can be attributed to the synergistic effect be-
tween β-BiNbO4 and Bi5Nb3O15. Bi5Nb3O15 with a
smaller particle size on β-BiNbO4 surface can effectively
short the diffuse length of electrons. BNO750 exhibits the

best photocatalytic properties under visible-light irradi-
ation, which can be attributed to its better crystallinity
and the synergistic effect between β-BiNbO4 and α-
BiNbO4. The small amount of α phase BiNbO4 loading
on surface of Low-β phase BiNbO4 can effectively im-
prove the electrons and holes segregation and migra-
tion. Holes are the main active species of Bi-Nb-O
system photocatalysts in aqueous solution under
visible-light irradiation.
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