144 research outputs found

    Effects of the Active Choices Program on Self-Managed Physical Activity and Social Connectedness in Australian Defence Force Veterans: Protocol for a Cluster-Randomized Trial.

    Get PDF
    BACKGROUND: A stepped-down program is one in which clients transition from the care of a health professional to self-managed care. Very little is known about the effectiveness of stepped-down physical activity (PA) programs for military service veterans. OBJECTIVE: This study will test Active Choices, a stepped-down behavioral support program designed to help Australian Defence Force veterans and their dependents who are clients of the Department of Veterans' Affairs, transition from treatment by an exercise physiologist or physiotherapist to self-managed PA. METHODS: The study is a parallel-group, randomized trial, with city-based exercise physiology or physiotherapy practices that recruit eligible Department of Veterans' Affairs clients assigned to Active Choices or a comparison program. The study aims to recruit 52 participants (26 in each group). The Active Choices program will consist of 2 face-to-face (Weeks 1, 12) and 2 telephone (Weeks 4 and 8) consultations. During these sessions, the participant and Active Choices consultant will utilize an evidence-based resource booklet to review the key benefits of an active lifestyle, build an action plan for PA preferences, set and review goals, self-monitor progress relative to set goals, and discuss strategies to overcome PA barriers. Linking participants to local PA communities to overcome social isolation will be a program priority. The comparison program will consist of 2 consultations (Weeks 1 and 12) and use fewer behavioral support strategies (education, self-monitoring, and action planning only) than Active Choices. Outcome measures will be administered at baseline, end-intervention (12 weeks), and follow-up (24 weeks) to assess changes in moderate intensity self-managed PA, psychological well-being, and social connectedness. We will also measure health service utilization and costs as well as PA choices across the intervention period. End-intervention interviews will capture participant experiences. RESULTS: Due to the impacts of the COVID-19 pandemic on human research activities in Australia, participant recruitment will commence when it is safe and feasible to do so. CONCLUSIONS: Findings will provide valuable pilot data to support up-scaling of the program and larger effectiveness trials with regional and rural as well as city-based Australian Defence Force veterans and their dependents. TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry (ANZCTR): ACTRN12620000559910; https://www.anzctr.org.au/ACTRN12620000559910.aspx. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/21911

    Distribution of causes of maternal mortality among different socio-demographic groups in Ghana; a descriptive study

    Get PDF
    BACKGROUND: Ghana's maternal mortality ratio remains high despite efforts made to meet Millennium Development Goal 5. A number of studies have been conducted on maternal mortality in Ghana; however, little is known about how the causes of maternal mortality are distributed in different socio-demographic subgroups. Therefore the aim of this study was to assess and analyse the causes of maternal mortality according to socio-demographic factors in Ghana.METHODS: The causes of maternal deaths were assessed with respect to age, educational level, rural/urban residence status and marital status. Data from a five year retrospective survey was used. The data was obtained from Ghana Maternal Health Survey 2007 acquired from the database of Ghana Statistical Service. A total of 605 maternal deaths within the age group 12-49 years were analysed using frequency tables, cross-tabulations and logistic regression.RESULTS: Haemorrhage was the highest cause of maternal mortality (22.8%). Married women had a significantly higher risk of dying from haemorrhage, compared with single women (adjusted OR = 2.7, 95%CI = 1.2-5.7). On the contrary, married women showed a significantly reduced risk of dying from abortion compared to single women (adjusted OR = 0.2, 95%CI = 0.1-0.4). Women aged 35-39 years had a significantly higher risk of dying from haemorrhage (aOR 2.6, 95%CI = 1.4-4.9), whereas they were at a lower risk of dying from abortion (aOR 0.3, 95% CI = 0.1-0.7) compared to their younger counterparts. The risk of maternal death from infectious diseases decreased with increasing maternal age, whereas the risk of dying from miscellaneous causes increased with increasing age.CONCLUSIONS: The study shows evidence of variations in the causes of maternal mortality among different socio-demographic subgroups in Ghana that should not be overlooked. It is therefore recommended that interventions aimed at combating the high maternal mortality in Ghana should be both cause-specific as well as target-specific

    Heterologous Protein Expression Is Enhanced by Harmonizing the Codon Usage Frequencies of the Target Gene with those of the Expression Host

    Get PDF
    Synonymous codon replacement can change protein structure and function, indicating that protein structure depends on DNA sequence. During heterologous protein expression, low expression or formation of insoluble aggregates may be attributable to differences in synonymous codon usage between expression and natural hosts. This discordance may be particularly important during translation of the domain boundaries (link/end segments) that separate elements of higher ordered structure. Within such regions, ribosomal progression slows as the ribosome encounters clusters of infrequently used codons that preferentially encode a subset of amino acids. To replicate the modulation of such localized translation rates during heterologous expression, we used known relationships between codon usage frequencies and secondary protein structure to develop an algorithm (“codon harmonization”) for identifying regions of slowly translated mRNA that are putatively associated with link/end segments. It then recommends synonymous replacement codons having usage frequencies in the heterologous expression host that are less than or equal to the usage frequencies of native codons in the native expression host. For protein regions other than these putative link/end segments, it recommends synonymous substitutions with codons having usage frequencies matched as nearly as possible to the native expression system. Previous application of this algorithm facilitated E. coli expression, manufacture and testing of two Plasmodium falciparum vaccine candidates. Here we describe the algorithm in detail and apply it to E. coli expression of three additional P. falciparum proteins. Expression of the “recoded” genes exceeded that of the native genes by 4- to 1,000-fold, representing levels suitable for vaccine manufacture. The proteins were soluble and reacted with a variety of functional conformation-specific mAbs suggesting that they were folded properly and had assumed native conformation. Codon harmonization may further provide a general strategy for improving the expression of soluble functional proteins during heterologous expression in hosts other than E. coli

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Control region mutations and the 'common deletion' are frequent in the mitochondrial DNA of patients with esophageal squamous cell carcinoma

    Get PDF
    BACKGROUND: North central China has some of the highest rates of esophageal squamous cell carcinoma in the world with cumulative mortality surpassing 20%. Mitochondrial DNA (mtDNA) accumulates more mutations than nuclear DNA and because of its high abundance has been proposed as a early detection device for subjects with cancer at various sites. We wished to examine the prevalence of mtDNA mutation and polymorphism in subjects from this high risk area of China. METHODS: We used DNA samples isolated from tumors, adjacent normal esophageal tissue, and blood from 21 esophageal squamous cell carcinoma cases and DNA isolated from blood from 23 healthy persons. We completely sequenced the control region (D-Loop) from each of these samples and used a PCR assay to assess the presence of the 4977 bp common deletion. RESULTS: Direct DNA sequencing revealed that 7/21 (33%, 95% CI = 17–55%) tumor samples had mutations in the control region, with clustering evident in the hyper-variable segment 1 (HSV1) and the homopolymeric stretch surrounding position 309. The number of mutations per subject ranged from 1 to 16 and there were a number of instances of heteroplasmy. We detected the 4977 bp 'common deletion' in 92% of the tumor and adjacent normal esophageal tissue samples examined, whereas no evidence of the common deletion was found in corresponding peripheral blood samples. CONCLUSIONS: Control region mutations were insufficiently common to warrant attempts to develop mtDNA mutation screening as a clinical test for ESCC. The common deletion was highly prevalent in the esophageal tissue of cancer cases but absent from peripheral blood. The potential utility of the common deletion in an early detection system will be pursued in further studies

    The Phosphodiesterase-5 Inhibitor Vardenafil Is a Potent Inhibitor of ABCB1/P-Glycoprotein Transporter

    Get PDF
    One of the major causes of chemotherapy failure in cancer treatment is multidrug resistance (MDR) which is mediated by the ABCB1/P-glycoprotein. Previously, through the use of an extensive screening process, we found that vardenafil, a phosphodiesterase 5 (PDE-5) inhibitor significantly reverses MDR in ABCB1 overexpressing cancer cells, and its efficacy was greater than that of tadalafil, another PDE-5 inhibitor. The present study was designed to determine the reversal mechanisms of vardenafil and tadalafil on ABC transporters-mediated MDR. Vardenafil or tadalafil alone, at concentrations up to 20 µM, had no significant toxic effects on any of the cell lines used in this study, regardless of their membrane transporter status. However, vardenafil when used in combination with anticancer substrates of ABCB1, significantly potentiated their cytotoxicity in ABCB1 overexpressing cells in a concentration-dependent manner, and this effect was greater than that of tadalafil. The sensitivity of the parenteral cell lines to cytotoxic anticancer drugs was not significantly altered by vardenafil. The differential effects of vardenafil and tadalafil appear to be specific for the ABCB1 transporter as both vardenafil and tadalafil had no significant effect on the reversal of drug resistance conferred by ABCC1 (MRP1) and ABCG2 (BCRP) transporters. Vardenafil significantly increased the intracellular accumulation of [3H]-paclitaxel in the ABCB1 overexpressing KB-C2 cells. In addition, vardenafil significantly stimulated the ATPase activity of ABCB1 and inhibited the photolabeling of ABCB1 with [125I]-IAAP. Furthermore, Western blot analysis indicated the incubation of cells with either vardenafil or tadalafil for 72 h did not alter ABCB1 protein expression. Overall, our results suggest that vardenafil reverses ABCB1-mediated MDR by directly blocking the drug efflux function of ABCB1

    Nanoparticle vesicle encoding for imaging and tracking cell populations.

    Get PDF
    For phenotypic behavior to be understood in the context of cell lineage and local environment, properties of individual cells must be measured relative to population-wide traits. However, the inability to accurately identify, track and measure thousands of single cells via high-throughput microscopy has impeded dynamic studies of cell populations. We demonstrate unique labeling of cells, driven by the heterogeneous random uptake of fluorescent nanoparticles of different emission colors. By sequentially exposing a cell population to different particles, we generated a large number of unique digital codes, which corresponded to the cell-specific number of nanoparticle-loaded vesicles and were visible within a given fluorescence channel. When three colors are used, the assay can self-generate over 17,000 individual codes identifiable using a typical fluorescence microscope. The color-codes provided immediate visualization of cell identity and allowed us to track human cells with a success rate of 78% across image frames separated by 8 h

    A Mutation in Intracellular Loop 4 Affects the Drug-Efflux Activity of the Yeast Multidrug Resistance ABC Transporter Pdr5p

    Get PDF
    Multidrug resistance protein Pdr5p is a yeast ATP-binding cassette (ABC) transporter in the plasma membrane. It confers multidrug resistance by active efflux of intracellular drugs. However, the highly polymorphic Pdr5p from clinical strain YJM789 loses its ability to expel azole and cyclohexmide. To investigate the role of amino acid changes in this functional change, PDR5 chimeras were constructed by segmental replacement of homologous BY4741 PDR5 fragments. Functions of PDR5 chimeras were evaluated by fluconazole and cycloheximide resistance assays. Their expression, ATPase activity, and efflux efficiency for other substrates were also analyzed. Using multiple lines of evidence, we show that an alanine-to-methionine mutation at position 1352 located in the predicted short intracellular loop 4 significantly contributes to the observed transport deficiency. The degree of impairment is likely correlated to the size of the mutant residue

    A proteomic approach for the identification of novel lysine methyltransferase substrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signaling via protein lysine methylation has been proposed to play a central role in the regulation of many physiologic and pathologic programs. In contrast to other post-translational modifications such as phosphorylation, proteome-wide approaches to investigate lysine methylation networks do not exist.</p> <p>Results</p> <p>In the current study, we used the ProtoArray<sup>® </sup>platform, containing over 9,500 human proteins, and developed and optimized a system for proteome-wide identification of novel methylation events catalyzed by the protein lysine methyltransferase (PKMT) SETD6. This enzyme had previously been shown to methylate the transcription factor RelA, but it was not known whether SETD6 had other substrates. By using two independent detection approaches, we identified novel candidate substrates for SETD6, and verified that all targets tested <it>in vitro </it>and in cells were genuine substrates.</p> <p>Conclusions</p> <p>We describe a novel proteome-wide methodology for the identification of new PKMT substrates. This technological advance may lead to a better understanding of the enzymatic activity and substrate specificity of the large number (more than 50) PKMTs present in the human proteome, most of which are uncharacterized.</p

    CRPV Genomes with Synonymous Codon Optimizations in the CRPV E7 Gene Show Phenotypic Differences in Growth and Altered Immunity upon E7 Vaccination

    Get PDF
    Papillomaviruses use rare codons relative to their hosts. Recent studies have demonstrated that synonymous codon changes in viral genes can lead to increased protein production when the codons are matched to those of cells in which the protein is being expressed. We theorized that the immunogenicity of the virus would be enhanced by matching codons of selected viral genes to those of the host. We report here that synonymous codon changes in the E7 oncogene are tolerated in the context of the cottontail rabbit papillomavirus (CRPV) genome. Papilloma growth rates differ depending upon the changes made indicating that synonymous codons are not necessarily neutral. Immunization with wild type E7 DNA yielded significant protection from subsequent challenge by both wild type and codon-modified genomes. The reduction in growth was most dramatic with the genome containing the greatest number of synonymous codon changes
    corecore