195 research outputs found
Kaon decays and the flavour problem
After a brief introduction to the so-called flavour problem, we discuss the
role of rare K decays in probing the mechanism of quark-flavour mixing.
Particular attention is devoted to the formulation of the Minimal Flavour
Violation hypothesis, as a general and natural solution to the flavour problem,
and to the fundamental role of K -> pi nu nu-bar decays in testing this
scenario.Comment: 10 pages, 6 figures, contribution to TH 2002 (Paris, July 2002
Radium ion: A possible candidate for measuring atomic parity violation
Single trapped and laser cooled Radium ion as a possible candidate for
measuring the parity violation induced frequency shift has been discussed here.
Even though the technique to be used is similar to that proposed by Fortson
[1], Radium has its own advantages and disadvantages. The most attractive part
of Radium ion as compared to that of Barium ion is its mass which comes along
with added complexity of instability as well as other issues which are
discussed hereComment: Conference proceedin
The NNLO gluon fusion Higgs production cross-section with many heavy quarks
We consider extensions of the Standard Model with a number of additional
heavy quarks which couple to the Higgs boson via top-like Yukawa interactions.
We construct an effective theory valid for a Higgs boson mass which is lighter
than twice the lightest heavy quark mass and compute the corresponding Wilson
coefficient through NNLO. We present numerical results for the gluon fusion
cross-section at the Tevatron for an extension of the Standard Model with a
fourth generation of heavy quarks. The gluon fusion cross-section is enhanced
by a factor of roughly 9 with respect to the Standard Model value. Tevatron
experimental data can place stringent exclusion limits for the Higgs mass in
this model.Comment: 14 pages, 1 tabl
Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model
The alignment in flavour space of the Yukawa matrices of a general
two-Higgs-doublet model results in the absence of tree-level flavour-changing
neutral currents. In addition to the usual fermion masses and mixings, the
aligned Yukawa structure only contains three complex parameters, which are
potential new sources of CP violation. For particular values of these three
parameters all known specific implementations of the model based on discrete
Z_2 symmetries are recovered. One of the most distinctive features of the
two-Higgs-doublet model is the presence of a charged scalar. In this work, we
discuss its main phenomenological consequences in flavour-changing processes at
low energies and derive the corresponding constraints on the parameters of the
aligned two-Higgs-doublet model.Comment: 46 pages, 19 figures. Version accepted for publication in JHEP.
References added. Discussion slightly extended. Conclusions unchange
MSSM in view of PAMELA and Fermi-LAT
We take the MSSM as a complete theory of low energy phenomena, including
neutrino masses and mixings. This immediately implies that the gravitino is the
only possible dark matter candidate. We study the implications of the
astrophysical experiments such as PAMELA and Fermi-LAT, on this scenario. The
theory can account for both the realistic neutrino masses and mixings, and the
PAMELA data as long as the slepton masses lie in the TeV range. The
squarks can be either light or heavy, depending on their contribution to
radiative neutrino masses. On the other hand, the Fermi-LAT data imply heavy
superpartners, all out of LHC reach, simply on the grounds of the energy scale
involved, for the gravitino must weigh more than 2 TeV. The perturbativity of
the theory also implies an upper bound on its mass, approximately TeV.Comment: Published version, figures update
Search for electromagnetic properties of the neutrinos at the LHC
Exclusive production of neutrinos via photon-photon fusion provides an
excellent opportunity to probe electromagnetic properties of the neutrinos at
the LHC. We explore the potential of processes pp-> p gamma gamma p -> p nu
anti-nu p and pp -> p gamma gamma p -> p nu anti-nu Z p to probe
neutrino-photon and neutrino-two photon couplings. We show that these reactions
provide more than seven orders of magnitude improvement in neutrino-two photon
couplings compared to LEP limits.Comment: 11 pages, 4 tables, New backgrounds have been adde
Constraining Proton Lifetime in SO(10) with Stabilized Doublet-Triplet Splitting
We present a class of realistic unified models based on supersymmetric SO(10)
wherein issues related to natural doublet-triplet (DT) splitting are fully
resolved. Using a minimal set of low dimensional Higgs fields which includes a
single adjoint, we show that the Dimopoulos--Wilzcek mechanism for DT splitting
can be made stable in the presence of all higher order operators without having
pseudo-Goldstone bosons and flat directions. The \mu term of order TeV is found
to be naturally induced. A Z_2-assisted anomalous U(1)_A gauge symmetry plays a
crucial role in achieving these results. The threshold corrections to
alpha_3(M_Z), somewhat surprisingly, are found to be controlled by only a few
effective parameters. This leads to a very predictive scenario for proton
decay. As a novel feature, we find an interesting correlation between the d=6
(p\to e^+\pi^0) and d=5 (p\to \nu-bar K+) decay amplitudes which allows us to
derive a constrained upper limit on the inverse rate of the e^+\pi^0 mode. Our
results show that both modes should be observed with an improvement in the
current sensitivity by about a factor of five to ten.Comment: 21 pages LaTeX, 2 figures, Few explanatory sentences and three new
references added, minor typos corrected
The Conformal Sector of F-theory GUTs
D3-brane probes of exceptional Yukawa points in F-theory GUTs are natural
hidden sectors for particle phenomenology. We find that coupling the probe to
the MSSM yields a new class of N = 1 conformal fixed points with computable
infrared R-charges. Quite surprisingly, we find that the MSSM only weakly mixes
with the strongly coupled sector in the sense that the MSSM fields pick up
small exactly computable anomalous dimensions. Additionally, we find that
although the states of the probe sector transform as complete GUT multiplets,
their coupling to Standard Model fields leads to a calculable threshold
correction to the running of the visible sector gauge couplings which improves
precision unification. We also briefly consider scenarios in which SUSY is
broken in the hidden sector. This leads to a gauge mediated spectrum for the
gauginos and first two superpartner generations, with additional contributions
to the third generation superpartners and Higgs sector.Comment: v2: 51 pages, 2 figures, remark added, typos correcte
Neutrino-electron scattering in noncommutative space
Neutral particles can couple with the gauge field in the adjoint
representation at the tree level if the space-time coordinates are
noncommutative (NC). Considering neutrino-photon coupling in the NC QED
framework, we obtain the differential cross section of neutrino-electron
scattering. Similar to the magnetic moment effect, one of the NC terms is
proportional to , where is the electron recoil energy.
Therefore, this scattering provides a chance to achieve a stringent bound on
the NC scale in low energy by improving the sensitivity to the smaller electron
recoil energy.Comment: 12 pages, 2 figure
Simultaneous Extraction of the Fermi constant and PMNS matrix elements in the presence of a fourth generation
Several recent studies performed on constraints of a fourth generation of
quarks and leptons suffer from the ad-hoc assumption that 3 x 3 unitarity holds
for the first three generations in the neutrino sector. Only under this
assumption one is able to determine the Fermi constant G_F from the muon
lifetime measurement with the claimed precision of G_F = 1.16637 (1) x 10^-5
GeV^-2. We study how well G_F can be extracted within the framework of four
generations from leptonic and radiative mu and tau decays, as well as from K_l3
decays and leptonic decays of charged pions, and we discuss the role of lepton
universality tests in this context. We emphasize that constraints on a fourth
generation from quark and lepton flavour observables and from electroweak
precision observables can only be obtained in a consistent way if these three
sectors are considered simultaneously. In the combined fit to leptonic and
radiative mu and tau decays, K_l3 decays and leptonic decays of charged pions
we find a p-value of 2.6% for the fourth generation matrix element |U_{e 4}|=0
of the neutrino mixing matrix.Comment: 19 pages, 3 figures with 16 subfigures, references and text added
refering to earlier related work, figures and text in discussion section
added, results and conclusions unchange
- …