109 research outputs found

    Importance of highly selective LC–MS/MS analysis for the accurate quantification of tamoxifen and its metabolites: focus on endoxifen and 4-hydroxytamoxifen

    Get PDF
    The antiestrogenic effect of tamoxifen is mainly attributable to the active metabolites endoxifen and 4-hydroxytamoxifen. This effect is assumed to be concentration-dependent and therefore quantitative analysis of tamoxifen and metabolites for clinical studies and therapeutic drug monitoring is increasing. We investigated the large discrepancies in reported mean endoxifen and 4-hydroxytamoxifen concentrations. Two published LC–MS/MS methods are used to analyse a set of 75 serum samples from patients treated with tamoxifen. The method from Teunissen et al. (J Chrom B, 879:1677–1685, 2011) separates endoxifen and 4-hydroxytamoxifen from other tamoxifen metabolites with similar masses and fragmentation patterns. The second method, published by Gjerde et al. (J Chrom A, 1082:6–14, 2005) however lacks selectivity, resulting in a factor 2–3 overestimation of the endoxifen and 4-hydroxytamoxifen levels, respectively. We emphasize the use of highly selective LC–MS/MS methods for the quantification of tamoxifen and its metabolites in biological samples

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    Triple-negative, basal-like, and quintuple-negative breast cancers: better prediction model for survival

    Get PDF
    Background: Triple-negative breast cancers (TNBCs) and basal-like breast cancers (BLBCs) are known as poor outcome subtypes with a lack of targeted therapy. Previous studies have shown conflicting results regarding the difference of prognostic significance between TNBCs and BLBCs. In this study, we aimed to characterize the prognostic features of TNBCs, in view of BLBCs and quintuple-negative breast cancers (QNBC/5NPs). Methods: Using tissue microarray-based immunohistochemical analysis, we categorized 951 primary breast cancers into four or five subtypes according to the expression of ER, PR, HER2, and basal markers (CK5/6, EGFR). Results: The results of this study showed that both TNBCs and BLBCs were associated with high histological and/ or nuclear grades. When the TNBCs are divided into two subtypes by the presence of basal markers, the clinicopathologic characteristics of TNBCs were mainly maintained in the BLBCs. The 5-subgrouping was the better prediction model for both disease free and overall survival in breast cancers than the 4-subgrouping. After multivariate analysis of TNBCs, the BLBCs did not have a worse prognosis than the QNBC/5NPs. Interestingly, the patients with BLBCs showed significant adjuvant chemotherapy benefit. In addition, QNBC/5NPs comprised about 6~8% of breast cancers in publicly available breast cancer datasets Conclusion: The QNBC/5NP subtype is a worse prognostic subgroup of TNBCs, especially in higher stage and this result may be related to adjuvant chemotherapy benefit of BLBCs, calling for caution in the identification of subgroups of patients for therapeutic classification

    Genome-Wide Detection of Allele Specific Copy Number Variation Associated with Insulin Resistance in African Americans from the HyperGEN Study

    Get PDF
    African Americans have been understudied in genome wide association studies of diabetes and related traits. In the current study, we examined the joint association of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) with fasting insulin and an index of insulin resistance (HOMA-IR) in the HyperGEN study, a family based study with proband ascertainment for hypertension. This analysis is restricted to 1,040 African Americans without diabetes. We generated allele specific CNV genotypes at 872,243 autosomal loci using Birdsuite, a freely available multi-stage program. Joint tests of association for SNPs and CNVs were performed using linear mixed models adjusting for covariates and familial relationships. Our results highlight SNPs associated with fasting insulin and HOMA-IR (rs6576507 and rs8026527, 3.7*10−7≤P≤1.1*10−5) near ATPase, class V, type 10A (ATP10A), and the L Type voltage dependent calcium channel (CACNA1D, rs1401492, P≤5.2*10−6). ATP10A belongs to a family of aminophospholipid-transporting ATPases and has been associated with type 2 diabetes in mice. CACNA1D has been linked to pancreatic beta cell generation in mice. The two most significant copy variable markers (rs10277702 and rs361367; P<2.0*10−4) were in the beta variable region of the T-cell receptor gene (TCRVB). Human and mouse TCR has been shown to mimic insulin and its receptor and could contribute to insulin resistance. Our findings differ from genome wide association studies of fasting insulin and other diabetes related traits in European populations, highlighting the continued need to investigate unique genetic influences for understudied populations such as African Americans

    Antitumor Activity of Noscapine in Combination with Doxorubicin in Triple Negative Breast Cancer

    Get PDF
    The aim of this study was to investigate the anticancer activity and mechanism of action of Noscapine alone and in combination with Doxorubicin against triple negative breast cancer (TNBC).TNBC cells were pretreated with Noscapine or Doxorubicin or combination and combination index values were calculated using isobolographic method. Apoptosis was assessed by TUNEL staining. Female athymic Nu/nu mice were xenografted with MDA-MB-231 cells and the efficacy of Noscapine, Doxorubicin and combination was determined. Protein expression, immunohistochemical staining were evaluated in harvested tumor tissues. values of 36.16±3.76 and 42.7±4.3 µM respectively. The CI values (<0.59) were suggestive of strong synergistic interaction between Noscapine and Doxorubicin and combination treatment showed significant increase in apoptotic cells. Noscapine showed dose dependent reduction in the tumor volumes at a dose of 150–550 mg/kg/day compared to controls. Noscapine (300 mg/kg), Doxorubicin (1.5 mg/kg) and combination treatment reduced tumor volume by 39.4±5.8, 34.2±5.7 and 82.9±4.5 percent respectively and showed decreased expression of NF-KB pathway proteins, VEGF, cell survival, and increased expression of apoptotic and growth inhibitory proteins compared to single-agent treatment and control groups.Noscapine potentiated the anticancer activity of Doxorubicin in a synergistic manner against TNBC tumors via inactivation of NF-KB and anti-angiogenic pathways while stimulating apoptosis. These findings suggest potential benefit for use of oral Noscapine and Doxorubicin combination therapy for treatment of more aggressive TNBC

    Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer

    No full text
    Tamoxifen is the standard-of-care treatment for estrogen receptor-positive premenopausal breast cancer. We examined tamoxifen metabolism via blood metabolite concentrations and germline variations of CYP3A5, CYP2C9, CYP2C19 and CYP2D6 in 587 premenopausal patients (Asians, Middle Eastern Arabs, Caucasian-UK; median age 39 years) and clinical outcome in 306 patients. N-desmethyltamoxifen (DM-Tam)/(Z)-endoxifen and CYP2D6 phenotype significantly correlated across ethnicities (R2: 53%, P&lt;10?77). CYP2C19 and CYP2C9 correlated with norendoxifen and (Z)-4-hydroxytamoxifen concentrations, respectively (P&lt;0.001). DM-Tam was influenced by body mass index (P&lt;0.001). Improved distant relapse-free survival (DRFS) was associated with decreasing DM-Tam/(Z)-endoxifen (P=0.036) and increasing CYP2D6 activity score (hazard ratio (HR)=0.62; 95% confidence interval (CI), 0.43–0.91; P=0.013). Low (&lt;14?nM) compared with high (&gt;35?nM) endoxifen concentrations were associated with shorter DRFS (univariate P=0.03; multivariate HR=1.94; 95% CI, 1.04–4.14; P=0.064). Our data indicate that endoxifen formation in premenopausal women depends on CYP2D6 irrespective of ethnicity. Low endoxifen concentration/formation and decreased CYP2D6 activity predict shorter DRFS

    Notch signaling in glioblastoma: a developmental drug target?

    Get PDF
    Malignant gliomas are among the most devastating tumors for which conventional therapies have not significantly improved patient outcome. Despite advances in imaging, surgery, chemotherapy and radiotherapy, survival is still less than 2 years from diagnosis and more targeted therapies are urgently needed. Notch signaling is central to the normal and neoplastic development of the central nervous system, playing important roles in proliferation, differentiation, apoptosis and cancer stem cell regulation. Notch is also involved in the regulation response to hypoxia and angiogenesis, which are typical tumor and more specifically glioblastoma multiforme (GBM) features. Targeting Notch signaling is therefore a promising strategy for developing future therapies for the treatment of GBM. In this review we give an overview of the mechanisms of Notch signaling, its networking pathways in gliomas, and discuss its potential for designing novel therapeutic approaches
    corecore