20 research outputs found

    Nitisinone Arrests but Does Not Reverse Ochronosis in Alkaptonuric Mice.

    Get PDF
    Alkaptonuria (AKU) is an ultrarare autosomal recessive disorder resulting from a deficiency of homogentisate 1,2 dioxygenase (HGD), an enzyme involved in the catabolism of phenylalanine and tyrosine. Loss of HGD function prevents metabolism of homogentisic acid (HGA), leading to increased levels of plasma HGA and urinary excretion. Excess HGA becomes deposited in collagenous tissues and subsequently undergoes polymerisation, principally in the cartilages of loaded joints, in a process known as ochronosis. This results in an early-onset, devastating osteoarthropathy for which there is currently no effective treatment. We recently described the natural history of ochronosis in a murine model of AKU, demonstrating that deposition of ochronotic pigment begins very early in life and accumulates with age. Using this model, we were able to show that lifetime treatment with nitisinone, a potential therapy for AKU, was able to completely prevent deposition of ochronotic pigment. However, although nitisinone has been shown to inhibit ochronotic deposition, whether it can also facilitate removal of existing pigment has not yet been examined. We describe here that midlife administration of nitisinone to AKU mice arrests further deposition of ochronotic pigment in the tibiofemoral joint, but does not result in the clearance of existing pigment. We also demonstrate the dose-dependent response of plasma HGA to nitisinone, highlighting its efficacy for personalised medicine, where dosage can be tailored to the individual AKU patient

    Rare Complications of Alkaptonuria: Haemolysis and Amyloidosis

    No full text

    Alkaptonuria Severity Score Index Revisited: Analysing the AKUSSI and Its Subcomponent Features.

    No full text
    BackgroundAlkaptonuria (AKU) is a rare disorder with no licensed treatment; nitisinone may reduce symptoms and progression. The All Alkaptonuria Severity Score Index (AKUSSI) measures disease severity in clinical, joint and spine domains, with 57 subcomponent feature scores. Our primary aim was to assess tools for validating scores such as the AKUSSI by detecting relationships between features both before and during nitisinone treatment.MethodsAKUSSI measurements from nitisinone-treated patients visiting the National AKU Centre between 01-Jun-2012 and 31-May-2016 were analysed pre-treatment, at first treatment and annually to Year 3 post-treatment. Principal component analysis (PCA) and redundancy analysis assessed whether any AKUSSI features contributed little information to the overall score.Results65 AKU patients were included: 17 with a pre-treatment AKUSSI measurement (10 later received nitisinone) and 48 with a first measurement at their first treatment visit. In PCA, the first four principal components (PC1-PC4) explained ≥50% of AKUSSI variance at all visits (54.1-87.3%). Some features regularly dominated their domain's PC1: ears, aortic sclerosis, and nasal/temporal eye scores (clinical), pain-related scores (joint) and cervical, lumbar and thoracic spine scores (spine). Only the right-hand/wrist score was consistently redundant. Right eye (nasal) and left ear scores were redundant pre-treatment, potentially correlating with other dominant clinical PC1 features.ConclusionsPCA and redundancy analysis supported the AKUSSI as a robust AKU disease severity measure, although some AKUSSI features could be removed for simplicity. For small patient populations and rare diseases, PCA and redundancy analysis together can aid validation of disease severity metrics

    First Report of a Deletion Encompassing an Entire Exon in the Homogentisate 1,2-Dioxygenase Gene Causing Alkaptonuria

    No full text
    Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD). Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb), one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin
    corecore