131 research outputs found

    Novel quantum initial conditions for inflation

    Get PDF
    We present a novel approach for setting initial conditions on the mode functions of the Mukhanov Sazaki equation. These conditions are motivated by minimisation of the renormalised stress-energy tensor, and are valid for setting a vacuum state even in a context where the spacetime is changing rapidly. Moreover, these alternative conditions are potentially observationally distinguishable. We apply this to the kinetically dominated universe, and compare with the more traditional approach.Science and Technology Facilities CouncilThis is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevD.94.02404

    Towards a framework for testing general relativity with extreme-mass-ratio-inspiral observations

    Get PDF
    Extreme-mass-ratio-inspiral observations from future space-based gravitational-wave detectors such as LISA will enable strong-field tests of general relativity with unprecedented precision, but at prohibitive computational cost if existing statistical techniques are used. In one such test that is currently employed for LIGO black hole binary mergers, generic deviations from relativity are represented by N deformation parameters in a generalized waveform model; the Bayesian evidence for each of its 2N combinatorial submodels is then combined into a posterior odds ratio for modified gravity over relativity in a null-hypothesis test. We adapt and apply this test to a generalized model for extreme-mass-ratio inspirals constructed on deformed black hole spacetimes, and focus our investigation on how computational efficiency can be increased through an evidence-free method of model selection. This method is akin to the algorithm known as product-space Markov chain Monte Carlo, but uses nested sampling and improved error estimates from a rethreading technique. We perform benchmarking and robustness checks for the method, and find order-of-magnitude computational gains over regular nested sampling in the case of synthetic data generated from the null model.AJKC acknowledges support from the Jet Propulsion Laboratory (JPL) Research and Technology Development programme. SH thanks the Science and Technology Facilities Council (STFC) for financial support. CJM acknowledges financial support provided under the European Union’s H2020 ERC Consolidator Grant ‘Matter and strong-field gravity: New frontiers in Einstein’s theory’ grant agreement no. MaGRaTh646597, and networking support by the COST Action CA16104. Parts of this work were performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from STFC. Parts of this work were also undertaken on the COSMOS Shared Memory system at DAMTP, University of Cambridge operated on behalf of the STFC DiRAC HPC Facility; this equipment is funded by BIS National E-infrastructure capital grant ST/J005673/1 and STFC grants ST/H008586/1, ST/K00333X/1. Parts of this work were also carried out at JPL, California Institute of Technology, under a contract with the National Aeronautics and Space Administration

    Constraining the dark energy equation of state using Bayes theorem and the Kullback–Leibler divergence

    Get PDF
    Data-driven model-independent reconstructions of the dark energy equation of state ww(zz) are presented using Planck\textit{Planck} 2015 era cosmic microwave background, baryonic acoustic oscillations (BAO), Type Ia supernova (SNIa) and Lyman α\alpha (Lyα\alpha) data. These reconstructions identify the ww(zz) behaviour supported by the data and show a bifurcation of the equation of state posterior in the range 1.5 < zz < 3. Although the concordance Λ\Lambda cold dark matter (Λ\LambdaCDM) model is consistent with the data at all redshifts in one of the bifurcated spaces, in the other, a supernegative equation of state (also known as ‘phantom dark energy’) is identified within the 1.5σ\sigma confidence intervals of the posterior distribution. To identify the power of different data sets in constraining the dark energy equation of state, we use a novel formulation of the Kullback–Leibler divergence. This formalism quantifies the information the data add when moving from priors to posteriors for each possible data set combination. The SNIa and BAO data sets are shown to provide much more constraining power in comparison to the Lyα\alpha data sets. Further, SNIa and BAO constrain most strongly around redshift range 0.1–0.5, whilst the Lyα\alpha data constrain weakly over a broader range. We do not attribute the supernegative favouring to any particular data set, and note that the Λ\LambdaCDM model was favoured at more than 2 log-units in Bayes factors over all the models tested despite the weakly preferred ww(zz) structure in the data.This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council (STFC). Parts of this work were undertaken on the COSMOS Shared Memory system at DAMTP, University of Cambridge operated on behalf of the STFC DiRAC HPC Facility; this equipment is funded by BIS National E-infrastructure capital grant ST/J005673/1 and STFC grants ST/H008586/1, ST/K00333X/1. SH and WJH thank STFC for fi- nancial support

    AMI observations of 10 CLASH galaxy clusters: SZ and X-ray data used together to determine cluster dynamical states

    Get PDF
    © 2016 The Authors. Published by Oxford University Press on behalf of The Royal Astronomical Society.Using Arcminute Microkelvin Imager (AMI) Sunyaev-Zel'dovich (SZ) observations towards 10 CLASH (Cluster Lensing and Supernova Survey with Hubble) clusters, we investigate the influence of cluster mergers on observational galaxy cluster studies. Although selected to be largely relaxed, there is disagreement in the literature on the dynamical states of CLASH sample members. We analyse ourAMIdata in a fully Bayesianway to produce estimated cluster parameters and consider the intrinsic correlations in our Navarro, Frenk and White/generalized Navarro, Frenk and White-based model. Varying pressure profile shape parameters, illustrating an influence of mergers on scaling relations, induces small deviations from the canonical selfsimilar predictions - in agreement with simulations of Poole et al. (2007) who found that merger activity causes only small scatter perpendicular to the relations. We demonstrate this effect observationally using the different dependences of SZ and X-ray signals to ne that cause different sensitivities to the shocking and/or fractionation produced by mergers. Plotting YX-Mgas relations (where YX = MgasT) derived from AMI SZ and from Chandra X-ray gives ratios of AMI and Chandra YX and Mgas estimates that indicate movement of clusters along the scaling relation, as predicted by Poole et al. (2007). Clusters that have moved most along the relation have the most discrepant TSZ and TX estimates: all the other clusters (apart from one) have SZ and X-ray estimates of Mgas, T and YX that agree within r500. We use SZ versus X-ray discrepancies in conjunction with Chandra maps and TX profiles, making comparisons with simulated cluster merger maps in Poole et al. (2006) to identify disturbed members of our sample and estimate merger stages.We thank the staff of the Mullard Radio Astronomy Observatory for their invaluable assistance in the commissioning and operation of AMI, which is supported by Cambridge University. WJH and CR are grateful for the support of STFC Studentships. CR also acknowledges the support of Cambridge University. MO and YCP acknowledge support from Research Fellowships from Sidney Sussex College and Trinity College, Cambridge, respectively. We thank Arif Babul for his assistance in accessing the Poole et al. online materials. Much of this work was undertaken on the COSMOS Shared Memory system at DAMTP, Cambridge University, operated on behalf of the STFC DiRAC HPC Facility. This equipment is funded by BIS National E-infrastructure capital grant ST/J005673/1 and STFC grants ST/H008586/1, ST/K00333X/1

    Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient

    Get PDF
    The natural abundance of stable 15N isotopes in soils and plants is potentially a simple tool to assess ecosystem N dynamics. Several open questions remain, however, in particular regarding the mechanisms driving the variability of foliar δ15N values of non-N2 fixing plants within and across ecosystems. The goal of the work presented here was therefore to: (1) characterize the relationship between soil net mineralization and variability of foliar Δδ15N (δ15Nleaf − δ15Nsoil) values from 20 different plant species within and across 18 grassland sites; (2) to determine in situ if a plant’s preference for NO3− or NH4+ uptake explains variability in foliar Δδ15N among different plant species within an ecosystem; and (3) test if variability in foliar Δδ15N among species or functional group is consistent across 18 grassland sites. Δδ15N values of the 20 different plant species were positively related to soil net mineralization rates across the 18 sites. We found that within a site, foliar Δδ15N values increased with the species’ NO3− to NH4+ uptake ratios. Interestingly, the slope of this relationship differed in direction from previously published studies. Finally, the variability in foliar Δδ15N values among species was not consistent across 18 grassland sites but was significantly influenced by N mineralization rates and the abundance of a particular species in a site. Our findings improve the mechanistic understanding of the commonly observed variability in foliar Δδ15N among different plant species. In particular we were able to show that within a site, foliar δ15N values nicely reflect a plant’s N source but that the direction of the relationship between NO3− to NH4+ uptake and foliar Δδ15N values is not universal. Using a large set of data, our study highlights that foliar Δδ15N values are valuable tools to assess plant N uptake patterns and to characterize the soil N cycle across different ecosystems

    Unique contributions to the scalar bispectrum in `just enough inflation'

    Full text link
    A scalar field rolling down a potential with a large initial velocity results in inflation of a finite duration. Such a scenario suppresses the scalar power on large scales improving the fit to the cosmological data. We find that the scenario leads to a hitherto unexplored situation wherein the boundary terms dominate the contributions to the scalar bispectrum over the bulk terms. We show that the consistency relation governing the non-Gaussianity parameter fNLf_{_{\rm NL}} is violated on large scales and that the contributions at the initial time can substantially enhance the value of fNLf_{_{\rm NL}}.Comment: v1: 5 pages, 4 figure

    Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition

    Get PDF
    In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex—the W and Y chromosomes1, 2, 3, 4, 5. By contrast, the sex chromosomes found in both sexes—the Z and X chromosomes—are assumed to have diverged little from their autosomal progenitors2. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.National Science Foundation (U.S.)Howard Hughes Medical Institut

    Evolution of Wenger's concept of community of practice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the experience of health professionals, it appears that interacting with peers in the workplace fosters learning and information sharing. Informal groups and networks present good opportunities for information exchange. Communities of practice (CoPs), which have been described by Wenger and others as a type of informal learning organization, have received increasing attention in the health care sector; however, the lack of uniform operating definitions of CoPs has resulted in considerable variation in the structure and function of these groups, making it difficult to evaluate their effectiveness.</p> <p>Objective</p> <p>To critique the evolution of the CoP concept as based on the germinal work by Wenger and colleagues published between 1991 and 2002.</p> <p>Discussion</p> <p>CoP was originally developed to provide a template for examining the learning that happens among practitioners in a social environment, but over the years there have been important divergences in the focus of the concept. Lave and Wenger's earliest publication (1991) centred on the interactions between novices and experts, and the process by which newcomers create a professional identity. In the 1998 book, the focus had shifted to personal growth and the trajectory of individuals' participation within a group (i.e., peripheral versus core participation). The focus then changed again in 2002 when CoP was applied as a managerial tool for improving an organization's competitiveness.</p> <p>Summary</p> <p>The different interpretations of CoP make it challenging to apply the concept or to take full advantage of the benefits that CoP groups may offer. The tension between satisfying individuals' needs for personal growth and empowerment versus an organization's bottom line is perhaps the most contentious of the issues that make CoPs difficult to cultivate. Since CoP is still an evolving concept, we recommend focusing on optimizing specific characteristics of the concept, such as support for members interacting with each other, sharing knowledge, and building a sense of belonging within networks/teams/groups. Interventions that facilitate relationship building among members and that promote knowledge exchange may be useful for optimizing the function of these groups.</p

    Use of communities of practice in business and health care sectors: A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since being identified as a concept for understanding knowledge sharing, management, and creation, communities of practice (CoPs) have become increasingly popular within the health sector. The CoP concept has been used in the business sector for over 20 years, but the use of CoPs in the health sector has been limited in comparison.</p> <p>Objectives</p> <p>First, we examined how CoPs were defined and used in these two sectors. Second, we evaluated the evidence of effectiveness on the health sector CoPs for improving the uptake of best practices and mentoring new practitioners.</p> <p>Methods</p> <p>We conducted a search of electronic databases in the business, health, and education sectors, and a hand search of key journals for primary studies on CoP groups. Our research synthesis for the first objective focused on three areas: the authors' interpretations of the CoP concept, the key characteristics of CoP groups, and the common elements of CoP groups. To examine the evidence on the effectiveness of CoPs in the health sector, we identified articles that evaluated CoPs for improving health professional performance, health care organizational performance, professional mentoring, and/or patient outcome; and used experimental, quasi-experimental, or observational designs.</p> <p>Results</p> <p>The structure of CoP groups varied greatly, ranging from voluntary informal networks to work-supported formal education sessions, and from apprentice training to multidisciplinary, multi-site project teams. Four characteristics were identified from CoP groups: social interaction among members, knowledge sharing, knowledge creation, and identity building; however, these were not consistently present in all CoPs. There was also a lack of clarity in the responsibilities of CoP facilitators and how power dynamics should be handled within a CoP group. We did not find any paper in the health sector that met the eligibility criteria for the quantitative analysis, and so the effectiveness of CoP in this sector remained unclear.</p> <p>Conclusion</p> <p>There is no dominant trend in how the CoP concept is operationalized in the business and health sectors; hence, it is challenging to define the parameters of CoP groups. This may be one of the reasons for the lack of studies on the effectiveness of CoPs in the health sector. In order to improve the usefulness of the CoP concept in the development of groups and teams, further research will be needed to clarify the extent to which the four characteristics of CoPs are present in the mature and emergent groups, the expectations of facilitators and other participants, and the power relationship within CoPs.</p
    corecore