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ABSTRACT
A method is presented for Bayesian model selection without explicitly computing evidences,
by using a combined likelihood and introducing an integer model selection parameter n so
that Bayes factors, or more generally posterior odds ratios, may be read off directly from the
posterior of n. If the total number of models under consideration is specified a priori, the full
joint parameter space (θ, n) of the models is of fixed dimensionality and can be explored using
standard Markov chain Monte Carlo (MCMC) or nested sampling methods, without the need
for reversible jump MCMC techniques. The posterior on n is then obtained by straightforward
marginalization. We demonstrate the efficacy of our approach by application to several toy
models. We then apply it to constraining the dark energy equation of state using a free-form
reconstruction technique. We show that � cold dark matter is significantly favoured over all
extensions, including the simple w(z) = constant model.

Key words: equation of state – methods: data analysis – methods: statistical – cosmological
parameters – dark energy.

1 IN T RO D U C T I O N

Comparing two or more models given some data is central to the
scientific method. The field of model selection within statistical in-
ference attempts to address this problem, and numerous techniques
for choosing between models exist, including: Akaike’s Information
Criterion (Akaike 1974), Schwarz’s Bayesian Information Criterion
(Schwarz 1978) and the Bayesian evidence (Jeffreys 1961; MacKay
2003). Here, we focus on Bayesian model selection using the evi-
dence Z (also known as the prior predictive or marginal likelihood)
and posterior odds ratios (PORs) Pij (a generalization of the more
commonly used Bayes Factors Bij ), as this technique is inherent
to Bayes theorem and both are widely used throughout cosmology
and astrophysics (Liddle, Mukherjee & Parkinson 2006).

PORs provide a quantitative means for selecting between mod-
els and are usually calculated directly from the evidence of each
model. In higher dimensions, techniques to calculate evidences
include thermodynamic integration (Gelman & Meng 1998, also
known as simulated annealing), approximations to the evidence
when certain favourable conditions are met (such as unimodality
and Gaussianity; Tierney & B. 1986; Liddle et al. 2006) and nested
sampling (Skilling 2004, 2006; Sivia & Skilling 2006). Calculat-
ing Bayes factors directly, without calculating Z for each model,
is also possible using the Savage–Dickey density ratio for nested
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models (Verdinelli & Wasserman 1995, where a more complex
model reduces to the simpler by setting its additional parameters
appropriately). A good review from before nested sampling’s rise
in popularity can be found in Clyde et al. (2007); for a thorough
review of these methods in cosmology see Trotta (2008).

In this paper, we propose a method to calculate PORs without
the problems associated with evidence calculations or simplifying
assumptions. PORs are calculated directly from a set of models
explored simultaneously without constraints on the forms these
models might take. The new method circumvents the challenges
associated with accurate evidence calculations by computing PORs
using Bayesian parameter estimation, which is typically a more reli-
able and computationally less expensive task. Additionally, param-
eter estimation algorithms are more commonly used and therefore
the method provides an easy means for extending existing codes to
the domain of model selection. This is achieved by introducing a
parameter that selects between models, and allows the calculation
of PORs from the posterior probability of this parameter. We note
that similar approaches have been proposed previously (Hobson &
McLachlan 2003; Goyder & Lasenby 2004; Brewer & Donovan
2015), but these typically rely on the use of sampling techniques
capable of jumping between parameter spaces of different sizes,
such as reversible jump Markov chain Monte Carlo (MCMC; Green
1995), which requires special sampling methods that are often very
computationally demanding. Our approach is much simpler, requir-
ing no special sampling methods, provided the number of models
under consideration is specified a priori, and is related to the class
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of product–space MCMC methods originally proposed by (Carlin
& Chib 1995, see also Sisson 2005; Lodewyckx et al. 2011).

We apply our method to toy models and the cosmological prob-
lem of constraining the dark energy equation of state, with particular
emphasis on determining the complexity supported by data for de-
viations from � cold dark matter (�CDM). In both cases, we are
solving the problem of how many nodes are required in a piecewise
linear model to reconstruct a one-dimensional function. With the
number of nodes defining the models, we show explicitly that this
new method agrees with the evidences-based approach for calculat-
ing PORs.

The rest of the paper is organized as follows. Section 2 provides
a brief statistical overview of PORs and evidence calculation. Sec-
tion 3 discusses the statistical framework for calculating posteriors
odds ratios using parameter estimation instead of calculating evi-
dences. Thereafter, results are presented in Section 4 for a toy model
data fitting problem and in Section 5 for the cosmological problem
of characterizing the dark energy (DE) equation of state parameter
as a function of redshift using recent cosmological data sets. We
summarize our findings and conclude in Section 6.

2 BAC K G RO U N D

Bayes Theorem (Bayes & Price 1763; MacKay 2003; Sivia &
Skilling 2006) states that

Pr(X|Y , I ) = Pr(Y |X, I ) Pr(X|I )

Pr(Y |I )
, (1)

where X and Y are propositions, Pr(X) specifies our belief that the
proposition is true, and I is the background information. Using this,
we can calculate the probability that a set of parameters θ of a model
M takes specific values given some data D to constrain them (note
we drop the dependence on I as it is implicit throughout):

Pr(θ |D,M) = Pr(D|θ,M) Pr(θ |M)

Pr(D|M)
≡ Lπ

Z , (2)

where L, π and Z are shorthands for the likelihood, prior, and ev-
idence, respectively. This is Bayesian parameter estimation, where
Pr(θ |D,M) is the posterior probability distribution. Similarly, we
can calculate the probability of a model given some data:

Pr(M|D) = Pr(D|M) Pr(M)

Pr(D)
= ZπM

Pr(D)
. (3)

Taking the ratio of the probabilities of two models signifies our
degree of belief in one model over another. Taking the logarithm of
this ratio and using equation (3) above gives us PORs:

Pij = ln

[
Pr(Mj |D)

Pr(Mi |D)

]
= ln

(Zj

Zi

)
+ ln

(
πMj

πMi

)
. (4)

If πMi
= πMj

, then Pij = Bij , the Bayes factor, which is more
commonly used in the literature despite being a less general treat-
ment than the fully Bayesian PORs that also considers the prior
probability of each model. For both, criteria to give meaning to this
quantification are given by the Jeffreys guideline (Jeffreys 1961),
shown in Table 1. Model selection using Bayesian statistics thus re-
quires the calculation of ratios of evidences. Typically, the evidences
are first calculated separately and their ratios evaluated. Calculating
the evidence for each model is inherently difficult. From equation
(2), we see that Z is a normalization constant for Pr(θ |D,M),
allowing us to calculate it as

Z =
∫

all θ
L(θ )π (θ ) dθ. (5)

Table 1. Jeffreys guideline for interpreting PORs. As
Pji = −Pij , negative PORS imply reversed model favouring.

POR Favouring of Mj over Mi

0.0 ≤ Pij ≤ 1.0 None
1.0 ≤ Pij ≤ 2.5 Slight
2.5 ≤ Pij ≤ 5.0 Significant
5.0 ≤ Pij Decisive

Equation (5) is a multidimensional integral over the whole parame-
ter space of a model. Computationally, it is not possible to calculate
these by brute force even for modest dimensionalities, and the tech-
niques mentioned in the introduction have been developed as an
alternative means to do so. The most promising of these techniques
is nested sampling, and with steady advances made in both com-
puting power and algorithms to implement nested sampling, many
cosmological and astrophysical model selection problems can now
be solved by computing evidences, which is the current standard
practice.

3 M E T H O D

We propose a method here for calculating PORs, using parameter
estimation techniques, that avoids calculating evidences directly.
The method places no constraints on the models that can be con-
sidered and has the advantage of being simple to implement and
undisruptive for members of the community familiar with Bayesian
parameter estimation techniques.

Consider a number of different models Mn (n = 1, 2, . . . , N). We
combine these into a single hypermodel M. The parameters of M
are the integer variable n that ‘switches’ between the models Mn,
and the union θ of the parameter vectors θn of each individual model.
Note that, if there is some overlap between the parameter vectors
θn and θn′ of two different models, then the coincident parameters
are notionally included only once in the union θ . In practice, the
parameter n can be implemented as a continuous parameter and a
suitable binning used to convert it to an effective integer parame-
ter, thereby simplifying the implementation (provided the technique
used to explore the parameter space does not rely on gradient infor-
mation). Indeed, the implementation of our approach is, in general,
straightforward, since one needs only to write a simple ‘wrapper’
hyperlikelihood function for M, which calls the existing likelihood
function for the appropriate individual model Mn depending on the
(integer) value of n.

In general, the parameter vectors θn and θn′ for different models
will be of different dimensionalities. In the case of nested models,
where θn ⊂ θn + 1, such problems are usually accommodated using
reversible-jump Markov chain Monte Carlo (RJMCMC) methods,
which are capable of making transitions between spaces of different
dimensionality. In principle, such methods might also be used in the
case of non-nested models, even in the extreme case where θn and
θn′ have no parameters in common, although such applications have
not been widely explored.

Here, we adopt a different approach that accommodates nested
and non-nested models equally well, including the extreme case
mentioned above, and avoids the algorithmic complication and com-
putational expense of RJMCMC methods. The only assumption
required is that N (the number of models under consideration) is
known a priori. Although this seems an innocuous requirement, it
does constitute a mild limitation. Consider, for example, the classic
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nested problem of fitting a polynomial of unknown degree to a set
of (x, y) data points. In our approach, one is required to fix the
maximum allowed degree N of the polynomial in advance, whereas
this is not necessary in the traditional RJMCMC approach. None
the less, in realistic applications such a limitation is not too severe.

By fixing N, the full parameter space (θ , n) is determined a pri-
ori, and is of fixed dimensionality, so it may be explored using
standard sampling methods, such as MCMC or nested sampling
(MacKay 2003; Skilling 2006; Brewer, Pártay & Csányi 2011). Ex-
plicitly, suppose at some MCMC step or nested sampling iteration
one considers the point (θ, n), possibly after suitable binning of the
continuous parameter n to obtain an integer value. For any given
value of n so obtained, the union parameter space may be parti-
tioned into those parameters θn on which the model Mn depends
and the remaining parameters φn that are not used by Mn. The
‘wrapper’ hyperlikelihood function thus may pass only the param-
eters θn to the likelihood function for the appropriate model Mn.
The remaining parameters φn are thus ‘ignored’, which is equiva-
lent to assigning a constant likelihood value over this subspace. By
considering the full space (θ , n), however, the sampling method will
typically need to accommodate moderate to large dimensionality,
most likely possessing multiple modes and/or pronounced degen-
eracies. In practice, nested sampling is well suited to such problems,
and therefore we adopt it here.

Once one has obtained a set of posterior samples from the space
(θ , n), one may calculate Pr(n|D,M) by simply marginalizing out
all other parameters to produce a marginalized posterior probabil-
ity:

Pr(n|D,M) =
∫

Pr(θ, n|D,M) dθ (6)

= 1

ZM

∫
L(θ, n) π (θ, n) dθ, (7)

where ZM is the evidence for this hypermodel M. Since for any
given value of n the union parameter space may be partitioned
into those parameters θn on which the model Mn depends and
the remaining parameters φn that are not used by Mn, one may
write the likelihood in equation (7) as L(θn) and the priors as
π (θ |n) = π (θn|n)π (φn)π (n), where π (n) ≡ Pr(n|M). Hence equa-
tion (7) becomes

Pr(n|D,M) = π (n)

ZM

∫
L(θn) π (θn|n) dθn, (8)

where we have used the fact that the integral over the priors for
unused parameters is unity, namely

∫
dφn π (φn) = 1. We recognize

the integral in equation (8) as the evidence Zn of the model Mn, so
that we have

π (n)Zn = ZMPr(n|D,M). (9)

We are interested in the PORs between two models, Mi and Mj :

Pij = ln

[
Pr(n=j |D,M)

Pr(n=i|D,M)

]
, (10)

where the ZM cancels. Thus, the POR is given simply by the ratio
of values of the posterior Pr(n|D,M) for the two models, which
is obtained using the parameter estimation formulation of Bayes
theorem and the process of marginalization, without the need to
calculate evidences directly. The key feature is that the unused
parameters φn marginalize out to unity. Moreover, the posteriors
on φn should simply equal the priors on φn. Visual inspection of

these posteriors thus provides a useful check that the method is
performing correctly.

A potential downside to this method is the requirement that the
prior probabilities of the models are specified in advance. For signal
detection problems with an unknown number of sources, for exam-
ple Hobson & McLachlan (2003) and Feroz & Skilling (2013), this
is in principle undesirable but in practice a suitable prior choice
can always be found. Additionally, if calculating PORs for another
model MN+1 was desired, after having completed the analysis for
the first N models, then a repetition of the method with only this
new model and the most favourable model is possible, at a com-
putational cost of exploring the most favourable model1 a second
time.

It is also important to note, however, that our new method does
not produce an estimate of the error on the PORs in a single compu-
tation, whereas this is possible when calculating evidences directly
using nested sampling. Throughout we therefore use multiple repeat
runs to obtain an error on the PORs.

4 A PPLI CATI ON TO TOY-MODELS

In this section, we demonstrate our approach by applying it to
some toy-models and in the next section we apply our method to
constraining the DE equation of state as a function of redshift using
recent cosmological data sets.

In both applications, we seek to model a one-dimensional func-
tion y(x) using a piecewise linear interpolation scheme between a
set of nodes and ask the model selection question ‘how many nodes
are needed to fit the data?’. Thus we place a set of nodes yi(xi)
in the plane, where the amplitude yi and the position xi are model
parameters to be varied. At xmin and xmax, fixed-position nodes are
placed with varying amplitude only, such that for the model defined
by n internal nodes there are 2 + 2n parameters. As shown in Fig. 1,
linear interpolation is used to construct y at all points (with y(x) set
constant outside the range [xmin, xmax]). Of course, other interpola-
tion schemes between nodes may be used, such as splines, although
we do not consider these here. The application of these approaches
to constraining w(z) is described by Vázquez et al. (2012b).

A specific model is defined by how many nodes are used in
reconstructing y(x). Comparing multiple models with increasing
numbers of nodes identifies how many nodes are needed to fit the
data, in other words the preferred complexity inherent in the data. As
the final result, one can plot either Pr(y|x, n�), where n� denoted the
number of nodes in the most favoured model, or Pr(y|x) averaged
over all models weighted by their PORs (Parkinson & Liddle 2013;
Planck Collaboration XX 2015). Either approach identifies clearly
the nature of the data constraints on y(x).

The key strength of the reconstruction is its free-form nature,
which can capture any shape of function in the y(x) plane by
adding arbitrarily large numbers of nodes. Providing the model
selection criterion penalizes overcomplex models appropriately by
weighing ‘goodness-of-fit’ against the numbers of parameters in
the model (Occam’s Razor), identifying how much complexity the
data support is performed in a clear and unambiguous manner by
the favoured number of nodes. Model selection techniques can thus
be used to solve questions on the constraining power of the data, as
successfully shown in various cosmological applications (Vázquez
et al. 2012a,b; Planck Collaboration XX 2015).

1 The most favourable is best used, in light of discussions on the size of error
bars in Section 4.2.
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Figure 1. Illustration of the nodal reconstruction, which flexibly allows the parameter estimation process to define the preferred shape of y(x) from the data
by linearly interpolating nodes whose amplitudes, positions (for internal nodes) and number can vary as required. The figure shows the interpolation process,
and highlights how nodes can be positioned inside the unshaded prior space (with sorting of node positions such that xi < xi + 1).

Figure 2. Data points plotted in the (x, y) plane for each data set (a) and (b). The unshaded region represents the prior space for the yi amplitudes and xi

positions of the nodes, over which a uniform prior is assumed (with sorting of the node position parameters such that xi < xi + 1).

The nodal reconstructions are clearly nested models. Since our
general approach does not require this, for completeness we also
consider a non-nested model selection problem by comparing a
2-internal node reconstruction with a sinusoidal model. The rest
of this section presents the results obtained and highlights further
strengths and weaknesses of our approach.

4.1 Fitting a function to data

Consider a set of jmax data points {(xj, yj), j = 1, . . . , jmax} with
experimental errors {(σxj

, σyj
)} on each of the points. Assuming

there is a functional relationship between the independent variable
x and dependent variable y, captured by y = f(x), then the likelihood
of observing these data is given by

Pr({xj , yj }|{σxj
, σyj

}, f , X−, X+)

=
jmax∏
j=1

∫ X+

X−
dXj

exp

[
− (xj −Xj )2

2σ 2
xj

− (yj −f (Xj ))2

2σ 2
yj

]
2πσxj

σyj
(X+ − X−)

, (11)

where X−, X+ are the end points of the uniform region in which
the data points may be found a priori. A Bayesian derivation of this
likelihood can be found in Appendix A; for more detail see Sivia
& Skilling (2006). The integral is calculated numerically using
standard quadrature techniques.

Given the data, the Bayesian approach is to use this likelihood
to infer the probability distribution of the parameters in some para-
metric form of the function f. We will do this for the family of
functions described above, and use PORs to determine how many
nodes optimally reconstruct the function.

We test two different data sets, shown in Fig. 2. The traditional
evidence-based approach and our new method for calculating PORs
are compared for each data set. The constraints on y(x) given the
data are also discussed.

Data set (a) has 47 data points drawn uniformly in x from the
function y = sin(2πx) in the range x ∈ [0, 1], with each point
adjusted in x and y by random Gaussian noise with mean = 0 and
σ = 0.05 (error bars on data points are σ ).2 Data set (b) has 49
data points drawn as in (a) but from a piecewise-linear function
coinciding with the function y = sin(2πx) at x = 0, 0.25, 0.75, 1,
so that it is very difficult by eye to distinguish the two data sets
as being drawn from different functions. We call the function used
in (b) line(2πx) for brevity. Clearly, a linearly interpolated nodal
model with n = 2 internal nodes can represent this function exactly.

For each of the data sets, we test models with one internal node up
to seven internal nodes (i.e. three total nodes up to nine total nodes
or two line segments up to eight line segments), using POLYCHORD

(Handley, Hobson & Lasenby 2015) to calculate evidences (the
vanilla method henceforth) and again using POLYCHORD to imple-
ment the new method (Post(n) method henceforth).3 POLYCHORD is a

2 50 points were drawn initially for each data set, but some fellow outside
the prior range due to the Gaussian noise, and were not included.
3 Note the marginalized posterior probability on n is calculated from the
chain_unnormalized.txt file using the standard nested sampling technique
(Skilling 2006). It is important to use this file over the usual chain.txt file and
set up POLYCHORD to output all interchain points of the algorithm. This ensures
good reconstruction of Pr(n|D,M) over the lower probability regions in
light of the computing ‘log-sum-exp’ problem.
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Figure 3. PORs (or Bayes factors) for data sets (a) and (b) defined by Fig. 2. Bn,n′ denotes the Bayes factor for the models with n and n′ internal nodes.
Histograms represent PORs with respect to the most probable model. White, light grey and dark grey bars are for the vanilla, Post(n)25 and Post(n)50 results,
respectively. Error bars shown are sample standard deviations obtained from 10 repeat trials. The PORs agree well between methods.

Figure 4. Average timing data for data sets defined in Fig. 2 and the vanilla, Post(n)25 and Post(n)50 results defined in the text. The shaded regions show the
approximate number of likelihood calculations made for each model n and the solid lines show the cumulative numbers. More detail and an analysis of the
timing benefits of using our new method are given in Appendix B. Considering error bars on the PORs for the different methods, it is clear that the Post(n)50

method (darkest plots) can produce comparable accuracy in less likelihood calls than the vanilla method (lightest plot).

relatively new nested sampler and was found to be very suitable for
this problem. We use uniform priors on the y amplitudes of nodes,
and sorted uniform priors on the x position parameters of nodes,
where the x priors are uniform but forced to adhere to xi < xi + 1 to
avoid the scenario where the n internal nodes are interchangeable
with each other. We assign equal prior probabilities for each model,
so PORs are equal to Bayes factors.

Each data set is analysed 10 times for each method to deter-
mine the statistical uncertainty on the derived PORs. In each case,
the PORs are normalized to the model with the highest evidence
in the vanilla method. Errors on the PORs are given as the sam-
ple standard deviation from the 10 repeats. POLYCHORD was run
with Nlive = 25Ndim live points initially to obtain the results la-
belled Post(n)25, where Ndim = 2n + 2 is the number of parameters
to be explored (the dimension of the space) and the number of
live points, Nlive, is the only tuning parameter associated with the
POLYCHORD sampling algorithm. To highlight accuracy and timing
considerations when using the method, we also repeat the analysis
with Nlive = 50Ndim to obtain the results labelled Post(n)50.

4.2 Results for nested nodal models

The PORs (or Bayes factors) for the vanilla method with
Nlive = 25Ndim and Post(n) method with Nlive = 25Ndim and 50Ndim,
per data set, are shown in Fig. 3 and show good agreement between
the two methods regardless of Nlive. From this we conclude that the

methods produce consistent PORs. As one might expect, for the
line(2πx) data set, the preferred model has n = 2 internal nodes,
whereas a larger number of nodes is preferred for the sin(2πx) data
set. The timing data in Fig. 4 suggests that Post(n)25 results were
faster to obtain by about a factor of 2.5 when using the same Nlive

per parameter, however this comes at a cost in accuracy as the errors
on the vanilla PORs are clearly tighter than the Post(n)25 results.
Post(n)50, however, takes less time to produce similar accuracy for
the significant PORs. In general, we observe that our method can
produce Bayes factors faster than the vanilla method in a systematic
manner, and discuss this in Appendix B. Furthermore, the recon-
structions of the favoured models for each method are shown in
Figs 5 and 6, respectively. The reconstructions are identical in all
key features between methods. The Post(n)50 graph is not plotted
as it was very similar.

The important discrepancies between the vanilla and Post(n)
methods are in the errors on the PORs, where we have identi-
fied two issues: first for large negative PORs the errors from the
Post(n) method are quite large and, secondly, the errors on the
vanilla method are tighter for equivalent Nlive. The first discrepancy
might be expected given that POLYCHORD, and nested samplers in gen-
eral, rapidly converge to the central peak(s) in a distribution, thus
spending less time in lower likelihood regions and sampling those
regions proportionately less thoroughly. Given that each model in-
vestigated is a separate mode in the computation, a model with low
likelihood will be less thoroughly explored than the models with
larger likelihoods – making the calculation of Pr(n|D,M) less
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Figure 5. Reconstructions of y(x) using the vanilla method of explicitly calculating evidences to obtain PORs. Plots are from one of the 10 trials, arbitrarily
chosen, and are of the model with the largest POR, i.e. (a) six internal node model, (b) two internal node model. Each figure shows the posterior probability
Pr(y|x,D,M), in normalized slices of constant x to show the deviation from the peak y at each x, binned in 100 bins in both x and y. The color bars to the
right show the iso-probability confidence intervals at a given slice in x Sivia & Skilling (2006), see Planck Collaboration XX (2015) Section 8.2 equation (68)
for details. The 1σ and 2σ intervals are plotted as black lines for clarity and the cube-helix colour scheme by Green (2011) is used for linearity in grey-scale.
In white is plotted the underlying function from which the data was sampled, and even with less than 50 data points a good reconstruction is obtained.

Figure 6. Reconstructions of y(x) for the Post(n)25 results to obtain PORs. Plots are for comparison to the vanilla results of Fig. 5, and are plotted in the same
way. The Post(n)25 results agree well with the vanilla method results in all key features.

reliable for these models. This is, however, desirable behaviour.
Spending compute time only on probable models reduces the
overall time taken to find the most probable model(s), whilst the
less probable models are still sampled sufficiently well to identify
them as less probable.

The second discrepancy is more significant but equally pre-
dictable. The number of live points in POLYCHORD defines how fully
the space is explored. For the vanilla method, the Nlive = 25Ndim

calculation provides adequate sampling per model, whilst for the
Post(n) method a similar number of live points needs to explore
several models simultaneously, effectively reducing the live points
available to explore each model and producing larger errors. This
suggests that users need to ensure that algorithm tuning parameters
such as Nlive are chosen appropriately and check that the results
on repetitions of the algorithm are consistent. The Post(n)50 re-
sults demonstrate clearly that results are confidently extracted in
comparable compute-times when best practice is adhered to. Being
aware of the increased modality of the space that is inherent to
the method and ensuring that the sampling algorithm adequately
handles such complex parameter spaces helps ensure accurate
results.

Finally, it is worth making some brief comments on the ‘phys-
ical’ results of the model selection process for each of the data
sets. In data set (a), a more complex underlying shape in y(x) is
identified needing more nodes than data set (b), consistent with the
distinction between sin(2πx) and line(2πx). It should be noted too
that overfitting (adding more parameters than needed) is not heav-

ily penalized for data set (b), as observed in the slow decrease in
Bayes factors after the favoured model is found – this is standard
behaviour (Sivia & Skilling 2006, p. 93) and can be understood by
considering the Occam factor associated with a parameter which is
constrained without increasing the fit of the model (MacKay 2003,
p. 349). In general, the model selection and nodal reconstruction
technique produces strong conclusions on the shapes of the y(x)
plane, given the data in each case, and clearly identifies the inherent
complexity of the various data sets, as we desired it to.

4.3 Results for non-nested models

Our new method does not require that the models be nested. A model
is nested inside another ‘larger’ model if setting some parameters to
specific values in the larger model allows one to obtain the smaller
nested model. The nodal reconstructions are clearly nested in this
sense. Here, we quickly demonstrate that our method also works
for non-nested models.

We test data sets (a) and (b) against two models. The first model is
the sinusoid function y(x) = A sin(2πBx + C) + D and the second
model is the two internal node reconstruction, so that we expect data
set (a) to favour the sinusoidal model and (b) to favour the linear
model. Parameters A and B are scale parameters for the amplitude
and frequency, respectively; we assign to these logarithmic priors
in the range [0.1, 5]. Parameters C and D are shift parameters and
we assign uniform priors in the ranges [−π, π] and [−1.5, 1.5],
respectively. These priors reflect sufficient coverage of the prior
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space defined in Fig. 2 and are adequate for comparing the vanilla
and new methods. It is important to note that in this test, both the
vanilla method and Post(n) method used Nlive = 25Ndim. For the
vanilla method, this resulted in Nlive = 100 for the sinusoidal model
and Nlive = 150 for the four node model, whilst for the Post(n)
method the parameters were searched simultaneously (along with
n) to give 11 parameters and Nlive = 275.

The PORs for data set (a) favour the sinusoid by 1.94 ± 0.93 and
2.01 ± 1.08 units, for vanilla and Post(n) methods, respectively. The
PORs for data set (b) favour the linear model by 13.82 ± 1.02 and
14.87 ± 2.58 units, respectively, for vanilla and Post(n) methods.
Taking into account the previous discussion, it is clear that the new
method produces PORs consistent with the vanilla method. The
Post(n) method here was about 5 per cent slower for data set (a) and
30 per cent slower for data set (b). However, with the significantly
larger number of live points that the Post(n) method used, the fact
that the methods are of comparable time is a desirable result and
suggests that the unconstrained parameters for a given n are not
significantly increasing the compute time of those isolated nodes in
the parameter space.

In general, we conclude that the discussions in Section 3 regard-
ing unconstrained parameters is correct. When parameters were
reviewed for the chains files produced in a given model, the param-
eters that were not used by that model were distributed according
to their priors. This is one of the core strengths and novelties of the
method and allows PORs to be calculated without constraints on the
models to be compared. This verifies that the method works for non-
nested models, and we proceed now to apply it to a cosmological
application using the nodal reconstruction.

5 A P P L I C ATI O N S TO T H E DA R K E N E R G Y
E QUAT I O N O F S TATE

Having validated our approach on a toy problem, we now apply our
method to a cosmological application, for which the vanilla method
is not computationally suited. The aim is to demonstrate the method
in a typical model selection application to obtain PORs efficiently
and with estimates of the error that do not require excessive repe-
tition of long computations. We probe the DE equation of state pa-
rameter w(z) as a function of redshift to update the work of Vázquez
et al. (2012b), using more modern data sets. We further showcase the
usefulness of the nodal reconstruction approach, briefly described
in Section 4 and more fully in Vázquez et al. (2012b), in defining the
complexity supported by the data and identifying features in w(z),
adding to the list of papers using the reconstruction (Vázquez et al.
2012a,b; Aslanyan et al. 2014; Planck Collaboration XX 2015).

5.1 Method

We combine CMB data from the Planck 2013 data release
(Planck Collaboration XV 2014a; Planck Collaboration XVI 2014b;
Planck Collaboration XVII 2014c) with the Wilkinson Microwave
Anisotropy Probe WMAP 9-yr polarization data (Bennett et al.
2013), baryonic acoustic oscillation (BAO) from the BOSS data
release 11 (Anderson et al. 2014) and supernovae Type Ia (SNIa)
data from the Union 2.1 catalogue (Suzuki et al. 2012) to provide
constraints on DE behaviour. We focus on the redshift range z ∈
[0, 2] in the reconstruction, where we set to constant values
w(z) = w(2) when z > 2. We use the COSMOMC code package (Lewis
& Bridle 2002), which contains the CAMB code (Lewis, Challinor
& Lasenby 2000; Howlett et al. 2012), and substitute the MCMC

sampler for the MULTINEST nested sampling plugin running in con-
stant efficiency mode (Feroz & Hobson 2008; Feroz, Hobson &
Bridges 2009; Feroz et al. 2013), which is a well-established nested
sampling implementation for evidence calculations and parameter
estimation, and was the sampler used by Vázquez et al. (2012a,b)
thereby enabling a direct comparison. To facilitate deviations away
from the standard �CDM equation of state parameter w = −1, we
implement the ‘Parameterized Post-Friedmann’ framework (PPF)
modification to CAMB (Fang, Hu & Lewis 2008). For further details
on the method and data sets see Vázquez et al. (2012b) and Planck
Collaboration XVI (2014b), respectively.

Using PORs to identify the optimal number of nodes tells us
the complexity of w(z) features supported by the data. Further, the
nodal reconstruction, as shown in the toy model, is highly adept
at identifying constraints in the (w, z) plane. Of particular interest
is whether deviations in w(z) away from the successful �CDM
cosmological model are supported by modern data and to identify
which DE extensions are favoured. Theories incorporating devi-
ations from w = −1 include quintessence scalar fields for w >

−1 (Ratra & Peebles 1988; Caldwell, Dave & Steinhardt 1998;
Tsujikawa 2013) and phantom DE models with supernegative w <

−1 (Caldwell 2002; Sahni 2005). The possibility of crossing of the
phantom divide line at w = −1 in dynamical models has also been
considered (Zhang 2009). Modified gravity or brane-world models
also make predictions about w(z) (Sahni 2005). Thus, paramount
to understanding DE is determining w(z).

To do this, we compare six models, in order of increasing com-
plexity: �CDM with w = −1, wCDM with w constant in z but al-
lowed us to vary in amplitude, tiltCDM with w(z = 0) and w(z = 2)
allowed us to vary and linear interpolation for w(z) between them
(0 internal node model), and then nodal models with 1, 2 and 3
internal nodes, respectively. Models are abbreviated to �, w, t, 1, 2
and 3, respectively, where appropriate. Priors on each w parameter
are uniform on the range [−2, 0] and were chosen to be conserva-
tive, we did not check the robustness of results with respect to prior
choice and leave this for future work, see Vázquez et al. (2012b)
for such an analysis. Priors on each z parameter are uniform on
[0, 2] such that for more than one internal node zi < zi + 1 (i.e.
sorted uniform priors as in the toy model). The previous work by
Vázquez et al. (2012b) found that �CDM was favoured, whilst the
two internal node model had the second largest evidence, pointing to
structure in w(z) that could not be captured by a constant equation of
state parameter wCDM, or even the one internal node model. Here,
we show clearly that Planck 2013 era data sets do not have this
feature and only �CDM can be considered favoured.

An important point is that the Planck data require the addition
of 14 so called nuisance parameters. These must be sampled and,
together with the six parameters of CDM models, produce an at
least 20-dimensional parameter space. As MULTINEST is a rejection
nested sampling algorithm, it is expected that computation times
increase significantly in higher dimensions as the volume on the
shell increases.4 MULTINEST has the algorithm search parameters
Nlive and eff, where decreasing eff (in constant efficiency mode)
typically achieves more accurate results more effectively than in-
creasing Nlive.

4 Specifically, it constructs multidimensional ellipsoids to estimate sam-
pling within an iso-likelihood region, as required by nested sampling. The
ellipsoids expand by a fraction to ensure no viable regions of the true iso-
likelihood contour are outside this estimate. Points are sampled inside these
ellipsoids and rejected until meeting the nested sampling criterion.

MNRAS 455, 2461–2473 (2016)
Downloaded from https://academic.oup.com/mnras/article-abstract/455/3/2461/1069531/Bayesian-model-selection-without-evidences
by University of Cambridge user
on 08 September 2017



2468 S. Hee et al.

Table 2. The 30 priors that define the parameter space.
The top set of parameters are the CDM parameters, the
middle ones show the nuisance parameters associated
with the Planck 2013 data release, and the bottom set
are the parameters introduced by dark energy model
extensions, including n for selecting between models
and θuniform for testing a MULTINEST edge-effect problem.
Planck Collaboration XVI (2014b) has more details about
the CDM and nuisance parameters, whilst the dark energy
extension parameters are defined in the text.

Parameter Prior range Prior type

�bh2 [0.019, 0.025] Uniform
�ch2 [0.095, 0.145] Uniform
100θMC [1.03, 1.05] Uniform
τ [0.01, 0.4] Uniform
ns [0.885, 1.04] Uniform

ln (1010As) [2.5, 3.7] Uniform
APS

100 [0, 360] Uniform
APS

143 [0, 270] Uniform
APS

217 [0, 450] Uniform
ACIB

143 [0, 20] Uniform
ACIB

217 [0, 80] Uniform
AtSZ

143 [0, 10] Uniform
rPS

143×217 [0, 1] Uniform
rCIB

143×217 [0, 1] Uniform
γ CIB [−2, 2] Uniform
c100 [0.98, 1.02] Uniform
c217 [0.95, 1.05] Uniform
ξ tSZ−CIB [0, 1] Uniform
AkSZ [0, 10] Uniform
β1

1 [−20, 20] Uniform

w(zi)|i = 1, . . . , 5 [−2, − 0.01] Uniform
zi|i = 2, . . . , 4 [0.01, 2.0] Sorted-uniform
n [�, w, t, 1, 2, 3] Uniform
θuniform [−2, − 0.01] Uniform

With the new method there seems to be no way to estimate the
errors on the PORs from a single run, and attaining these is best
done via repeat simulation and the calculation of sample standard
deviations from these. We therefore performed three repetitions
each using Nlive = 500 with eff = 0.01 (the repeat runs) and the
default 2014 July COSMOMC priors for the 20 CDM and nuisance
parameters and the priors mentioned above for additional model
parameters; an overview is shown in Table 2. Constant efficiency
mode had to be used to attain feasible computing times, similarly
the search parameters could not just be increased arbitrarily. With
these MULTINEST search parameters and constant efficiency mode,
it was found that the edges of the priors were not sampled effec-
tively. The error is reproducible with a 20-dimensional Gaussian
test likelihood with a covariance matrix given by Planck chains. To
ensure this problem had no impact on our results, first we added
a prior for an unconstrained parameter, the θuniform parameter in
Table 2, which should produce a flat posterior. Observing the edge
effects problem on this parameter gives a clear indication of the
severity of the problem, and allows us to reconsider parameter esti-
mation conclusions if needed. Secondly, we tested for convergence
of the marginalized posterior on n with respect to search parameter
changes to ensure that our parameter estimation results were ro-
bust. We thus performed a single further run using MULTINEST with
the search parameters Nlive = 1000, eff = 0.005 (full run) for which
the edges of the prior were sampled effectively. Given the concerns
about the accuracy of the MULTINEST evidence calculation for Planck

Figure 7. The PORs obtained from the new method comparing the five
DE extension models to �CDM. The error bars on each histogram are the
sample standard deviations of the three repeat runs. It is clear that the two sets
of results agree very well, with discrepancies between them small compared
both to the error bars and the absolute values used to draw conclusions based
on Jeffreys guideline. This shows that the results are robust with respect to
changes in MULTINEST search parameters, as required. Numerical results are
given in Table 3.

Table 3. Summary of the Bayes factors from the four com-
putations. The full run and repeat averages columns show
results using the MULTINEST search parameters discussed in
the text. For both columns, the errors are sample standard
deviations of the three repeat trials. The results agree well
within 1σ confidence intervals for all but the B� w , where a
larger discrepancy occurs due to small error bars despite
a small difference in log-units. The results show clearly
that the new method implementation is robust to changes in
MULTINEST parameters.

Bayes factor Full run Repeat averages

B� w −2.41 ± 0.03 −2.55 ± 0.03
B� t −3.26 ± 0.11 −3.43 ± 0.11
B� 1 −3.54 ± 0.32 −3.97 ± 0.32
B� 2 −3.89 ± 0.40 −4.50 ± 0.40
B� 3 −4.31 ± 0.63 −4.94 ± 0.63

data (due to nuisance parameters, high dimensionality, and the need
for constant efficiency mode), the new method combined with the
two robustness checks thus provides a valuable alternative way to
obtain PORs.

5.2 Results

The POR results for the full run and the 3 repeat runs are shown in
Fig. 7 and Table 3. The key points are first that the PORs are con-
sistent with each other, demonstrating convergence of Pr(n|D,M)
with respect to MULTINEST search parameters, and secondly that the
w(z) investigation clearly favours �CDM.

The toy model showed that error bars on PORs will depend on
how thoroughly the sampling explores the space. Note that the er-
ror bars used are the sample standard deviations from the PORs
of the three repeat runs. The repeat run PORs are consistent with
the full run and sufficiently tight to resolve differences to make
conclusions based on Jeffreys guideline, suggesting that the space
is well explored. This convergence on reruns, together with the
convergence between different MULTINEST search parameters, sug-
gests that the POR results are robust. Additionally, the edge effect
problem previously mentioned was thoroughly checked for using an
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unconstrained parameter θuniform. The posterior of θuniform was close
to flat for all runs. The edge effect problem presumably affects all
parameters a small amount, as the strength of this effect is different
between the different MULTINEST search parameter settings whilst the
PORs are consistent, it suggests that the PORs are not significantly
biased. From these four runs, we therefore conclude that we have
accurate PORs and proceed to quote those of the full run combined
with the errors from the three repeat runs as upper estimates for
those of the full run (as repeats of a more well sampled run will
produce tighter estimates, shown in the toy model when doubling
Nlive).

From these PORs, it is clear that �CDM is the only favourable
model. The decrease in PORs with an increase in the number of pa-
rameters to model DE suggests that further additions of parameters
to model deviations from �CDM are penalized more strongly by
the Occam’s Razor principle than the gain in constraining power
that they provide. One can estimate the Occam factor associated
with adding an additional nodal amplitude parameter, using the
analysis in (MacKay 2003, page 349), as σw|D/σw , where σw|D is
the width around the peak of a Laplace approximation inside the
evidence integral and σw is the prior width. We estimating σw|D/σw

for non-Gaussian parameters with a full width half max (FWHM)
calculation of the 1D marginalized w-amplitude posterior. Doing
this for the wCDM model’s additional parameter yields a drop in
the Bayes factor due to the approximated Occam factor of −2.63.
The observed −2.41 ± 0.03 therefore suggests that the parameter
is not improving the likelihood fit to the data significantly. Doing
something similar for the three internal node model gives an Occam
factor of −0.45 (using the average of the five amplitudes; assuming
that an additional z-position parameter is unconstrained as there are
no additional w(z) features it would constrain). This is the antici-
pated decay in the POR when adding unnecessary nodes, and the
Bayes factor drop from 2CDM to 3CDM at −0.42 suggests that
three nodes already saturate the w(z) space.

A clear and strong conclusion from this analysis is that there
is considerably less evidence for deviations from �CDM in the
Planck era data sets used here than in the WMAP era data sets used
by Vázquez et al. (2012b), which is consistent with other results
(Planck Collaboration XVI 2014b; Shafer & Huterer 2014). The
next most favoured model is the next simplest one, wCDM, and at
a PORs of −2.41 ± 0.03 it is almost significantly disfavoured ac-
cording to the Jeffreys guideline. All other models are significantly
disfavoured at between 3.3 and 4.3 log units. The constraints in
the (w, z) plane for each of the model extensions beyond �CDM,
shown in Fig. 8, do however indicate some deviations from w = −1.
Typically the data seem to favour the phantom region, potentially
more so at the ends of the considered redshift range and less so
at redshift 0.4–0.7, where the data gives the tightest constraints.
However, the 1 σ and 2 σ contours clearly indicate that these effects
are not significant. At all z and for all models, w = −1 is com-
fortably within the peak of the Pr(w|z) distribution and more so in
the regions where we have strong data constraints, suggesting that
any deviations or apparent systematic patterns are dominated by a
lack of data. The plane reconstructions also support the model se-
lection conclusions that �CDM is significantly favoured over other
models, as the constraints in the data do not deviate from w = −1
beyond even 1σ .

The correct Bayesian way to view the w(z) plane reconstruc-
tions for all models considered is to sum over all the models whilst
weighting by the Bayesian evidence, or equivalently PORs. This is
exceptionally easy to implement with our new method, as a pro-
gram like GETDIST (included with COSMOMC) can use the chains file

produced by the new method to correctly weight all the models au-
tomatically whilst marginalizing out the parameter n. Fig. 9 shows
this for the five DE extension models beyond �CDM. When plot-
ting with �CDM, the plot is centred on w = −1, with 85 per cent of
the peak confidence interval region contained in the w = −1 line,
and thus a plot showing only the model extensions is more insight-
ful. The plane reconstruction shows clearly the constraining power
of the data at different redshifts as our knowledge of w(z) moves
from the prior on the left to the posterior on the right. The result
is a tightly constrained function of w(z) slightly below −1 for all
redshifts, suggesting a small favouring of the phantom region at an
insignificant level. Most importantly, �CDM is fully compatible,
well within 1σ of the model extension results, as is expected given
the Bayesian model selection analysis. This insignificant deviation
away from w = −1 explains clearly why �CDM is so heavily
favoured.

Of practical importance is the strength with which the nodal re-
construction identifies features, and especially that the reconstruc-
tion is data driven. Most of our data sets that can constrain w(z) are
in the redshift range z ∈ [0.5, 0.8] and this is shown by where the re-
constructions most tightly constrain the plane. This reconstruction
technique is clearly of merit and in the future, with more powerful
data sets, can hopefully act as a tool to identify features (if any) in
w(z). At present, the work here can only suggest that dark energy
models with w(z) close to −1 are needed. Finally, the posteriors of
the CDM parameters are plotted in Fig. 10 for each of the six mod-
els tested. The posteriors of the DE extensions agree well with the
�CDM values, as can be expected given that there is no significant
deviation from w = −1.

6 C O N C L U S I O N S

We demonstrated a novel method for calculating PORs through a
toy model application and then applied it to a cosmological model
selection problem.

Our new method uses Bayesian parameter estimation on a param-
eter that switches between models, via a hyperlikelihood that wraps
around the individual model likelihoods, to infer PORs (or Bayes
factors if desired) without calculating evidences. It uses novel parti-
tioning of the parameter space via the parameter n, and marginaliza-
tion of posterior probabilities, to allow sampling of a variable length
parameter space when moving between models, thus facilitating any
models to be tested without restriction and without reversible jump
Monte Carlo techniques. To use the method, one needs to have a pa-
rameter estimation algorithm capable of sampling from multimodal
spaces and to decide which models one wants to test a priori.

The toy model demonstrated clearly that the method is valid and
consistent with the existing method of calculating PORs by evaluat-
ing evidences. We conclude that the new method is not necessarily
faster, despite avoiding evidence integrals, for two reasons. First, to
get errors on the PORs it requires rerunning several times, whereas
nested sampling algorithms such as MULTINEST and POLYCHORD can
attain error estimates of evidences from a single run. Secondly, the
parameter space needs to be explored comparably thoroughly in
both methods, as shown by the increase in error bars on the PORs
in the toy model when spending less computational time on the new
method.

A peculiar feature of the new method in combination with nested
sampling (which likely applies to other samplers too) is that com-
putation time dedicated to a model is dependent on how strongly
the model is favoured over others. Less favoured models become
depopulated with live points as the nested sampling algorithm
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Figure 8. The w(z) priors, w(z) reconstructions and parameter constraints for each of the five model extensions beyond �CDM. The leftmost plot is the prior
space on the function w(z) as a result of our flat priors on amplitude and position parameters and the central plots show the posterior on w(z) defining the data
and model constraints on the w(z)-plane. These plots show the posterior probability Pr(w|z) similar to Fig. 5. Here, it is the probability of w as normalized
in each slice of constant z, with colour scale in confidence interval values shown. The 1σ and 2σ confidence intervals are plotted as black lines. Note that
the priors on w(z) include implicit prior information from COSMOMC, and therefore are not flat. The posteriors show that the data constrains w(z) strongly
compared to our priors. Rightmost are the 1D and 2D marginalized posteriors of the additional model parameters. Plots were produced using GETDIST and with
the cubehelix colour scheme by Green (2011) for linearity in grey-scale.

removes lowest likelihood points. As a result, we observed that
less favoured models typically had less accurate POR calculations,
which helps to reduce computing time, but still in such a way that
they were always identifiable as less favoured. The reduction in
computing time can be substantial, especially in applications where
there are a number of computationally expensive models with low
PORs.

The toy models illuminated precautionary measures that best be
adhered to by users. As with all Bayesian parameter estimation, ro-
bustness of posterior probabilities to changes in algorithm-specific
tuning parameters needs to be tested for and in the case of the new
method, where a posterior is used to infer evidence ratios, it is es-
pecially important to check this. It is best to test that the PORs
obtained from the posterior on n are consistent on repetitions of the
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Figure 9. Summarising the DE model extension results for the constraints on the w(z) plane. The five extension models, excluding �CDM, are weighted
by their evidences to give a model averaged plane reconstruction (Parkinson & Liddle 2013; Planck Collaboration XX 2015), and plotted as in Fig. 8. When
including �CDM, approximately 85 per cent of the central confidence interval region is contained in the line w = −1 due to the strength with which �CDM
is favoured by the PORs, almost 2σ . The two plots show the prior space (left) contracting down to the POR averaged w(z) plane reconstruction (right), as
discussed in the text. It is clear that �CDM is well within the favourable region, with the 1σ contours easily containing w = −1.

Figure 10. The CDM parameter 1D marginalized posteriors for each of the
six models tested. As MULTINEST converges to the peak likelihood regions,
the data points output to the chains file are more sparse for some of the
models. Typically, �CDM had eight times more points than wCDM with
which to accurately reconstruct these posteriors. The lower POR models had
less still and this leads to a lower quality reconstruction for the less favoured
models. Nevertheless, it is clear that the models agree well and there are no
significant deviations from the �CDM values of the CDM parameters, as
can be expected given the only slight deviation from w = −1 in each model.

algorithm and also that the error bars attained from repetitions are
sufficiently small if needing to make judgments based on Jeffreys
guideline. The toy model also highlighted the strength of the nodal
reconstruction in identifying features in y(x) plane reconstruction
problems. We conclude that it is a useful tool for analysing the
complexity supported by the data and add to the volume of litera-
ture using it (Vázquez et al. 2012a,b; Aslanyan et al. 2014; Planck
Collaboration XX 2015).

Thereafter, taking the above considerations into account, the new
method was used to attain PORs in a cosmological context where
direct evaluation of evidences can be computationally demanding
and problematic. We applied the nodal reconstruction technique
to reconstruct the dark energy redshift-dependent equation of state
parameter w(z), analysing the dynamic behaviour supported by
modern data sets in a search for deviations from the �CDM model
(w = −1). This was principally an update on a paper using WMAP
era data by Vázquez et al. (2012b). We concluded that �CDM
is significantly favoured above any nodal reconstruction applied.
Additionally, the model allowing w to vary as a constant is almost
significantly disfavoured at −2.41 ± 0.03 log-units of the POR
with respect to �CDM. We conclude that additional parameters
are systematically disfavoured: increasing the complexity of the
w(z) reconstruction decreases PORs with respect to �CDM. The
Occam’s Razor effect penalizes additional parameters when using
PORs to do model selection and, as �CDM is an excellent fit to
current cosmological data, the addition of parameters to extended
beyond �CDM adds less to the constraining power of the models
than the Occam’s factor penalizes.

The robustness of the results and methods were confirmed in
several ways. Fig. 10 shows that the CDM parameters of each of
the dark energy extension models agree well with the �CDM val-
ues, as is expected given that all models agree well with w = −1.
Further, a potential problem in sampling the edges of priors in
high dimensions was identified with MULTINEST when using con-
stant efficiency mode, but through tracking an unconstrained pa-
rameter θuniform, it was shown to be insignificant given the final
search parameters used. General robustness of the new method
was confirmed too by repeating the calculation of Pr(n|D,M)
with different search parameters and showing that the value
of Pr(n|D,M) had converged with respect to algorithm tuning
parameter.

Finally, the cosmological application demonstrated the strength
of the new method, attaining PORs without needing evidence cal-
culations and effectively dealing with parameter spaces of varying
length. Errors on the PORs were attained through repeat runs with a
faster sampling parameter setup which doubled to confirm that the
PORs were converged and accurate. As such a robustness check is
important for any parameter estimation or model selection problem,
where an algorithm uses tuning parameters for the sampling, this
approach should come at little extra cost in practice.
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A P P E N D I X A : L I N E FI T T I N G L I K E L I H O O D

We aim to fit a parametric function y = f(x) to a set of jmax data
points {xj, yj}, where we have some knowledge of the errors on
these measurements {σxj

, σyj
} ({j = 1, . . . , jmax}). In order to fit the

function, one needs to calculate the likelihood of observing the data
{xj, yj}, given the function f, the observed errors and any additional
assumptions we must make I:

Pr({xj , yj }|{σxj
, σyj

}, f , I ). (A1)

To model the ‘error bars’, we assume that each of the data points (xj,
yj) is drawn from a separable Gaussian distribution with covariance
diag(σ 2

xj
, σ 2

yj
). The distribution will be centred about some true

value (Xj, Yj), where these values are unknown and will need to be
marginalized over as nuisance parameters in the final calculation.
If each of these distributions are independent from each other, we
arrive at the likelihood:

Pr({xj , yj }|{Xj , Yj }, {σxj
, σyj

})

=
jmax∏
j=1

1

2πσxj
σyj

exp

[
−

(
xj − Xj

)2

2σ 2
xj

−
(
yj − Yj

)2

2σ 2
yj

]
. (A2)

To marginalize out the nuisance parameters, we place our prior
assumptions on them. We shall assume that the true Xj values are
drawn uniformly in some range X− < Xj < X+, and we shall assume
that the true Yj obey the functional relationship: Yj = f(Xj). Given
this, the probability distribution is

Pr({Xj , Yj }|f , X−, X+)

=
⎧⎨
⎩

1
X+−X−

jmax∏
j=1

δ
[
Yj − f (Xj )

]
: X− < Xj < X+

0 : otherwise,
(A3)

where δ is the Dirac δ-function. Multiplying equations (A2) and
(A3) together and marginalizing out {Xj, Yj} by integrating yields
the likelihood:

Pr({xj , yj }|{σxj
, σyj

}, f , X−, X+)

=
jmax∏
j=1

∫ X+

X−
dXj

exp

[
− (xj −Xj )2

2σ 2
xj

− (yj −f (Xj ))2

2σ 2
yj

]
2πσxj

σyj
(X+ − X−)

. (A4)

This procedure may be straightforwardly extended to consider
correlated error bars where the covariance matrix of equation
(A2) is no longer diagonal. One may also adjust equation (A3)

MNRAS 455, 2461–2473 (2016)
Downloaded from https://academic.oup.com/mnras/article-abstract/455/3/2461/1069531/Bayesian-model-selection-without-evidences
by University of Cambridge user
on 08 September 2017

http://www.hpc.cam.ac.uk/
http://arxiv.org/abs/1306.2144
http://arxiv.org/abs/1502.02114
http://arxiv.org/abs/0909.3013


Model selection without evidences 2473

if some additional knowledge is known about the independent
variables Xj. For further details, the reader is referred to Sivia &
Skilling (2006).

A P P E N D I X B: EF F I C I E N T C O M P U T I N G O F
BAY E S FAC TO R S

Using the data points in Fig. B1 to test the vanilla and Post(n)
methods, we demonstrate that our new method may outperform the
evidences approach in a systematic fashion that makes the approach
desirable for common astrophysical and cosmological problems.

Running the nodal reconstruction technique with models of 1
internal node up to 13 internal nodes (3–15 total nodes), we ob-
tain Bayes factors and timing results shown in Fig. B2. The timing
data shows the number of posterior points, and thus likelihood
calculations up to a factor of the PolyChord efficiency, that each
method makes for each of the nodal reconstruction models (shaded
plots), alongside the cumulative number of likelihood calculations
of these models (line plots). Using the vanilla method, completing
the evidence calculation for each model means that adding increas-
ingly complex models is increasingly computationally expensive.
In the Post(n) method, however, the model space is rapidly tra-
versed from lower likelihood regions to higher likelihood regions,
so that computationally expensive models with low likelihoods (or
more correctly, with lower Bayes factors compared to other models
in the space) are explored rapidly by the nested sampling algo-
rithm. This is clearly identified by the fact that the Bayes factors
and the number of likelihood calculations peak at the same model
(four internal nodes) and tail off similarly for models on either side
of this.

It is worth noting, however, that the Post(n) method performs
more likelihood calculations for the most probable models, because
the additional overhead of setting up the other parameters and popu-
lating their dimensions with live points (because throughout we use
that Nlive ∝ Ndim) means that the algorithm progresses more slowly.

Astrophysical and cosmological problems where a number of
models of increasing complexity are explored may therefore ben-

Figure B1. A set of 11 data points defining a spike in the x–y plane. We test
this data set with models of 1 internal node up to 13 internal nodes (3–15
total nodes).

Figure B2. Bayes factors with respect to the most probable model (top)
and timing data (bottom) for the vanilla method and the Post(n) method
using 25Ndim and 50Ndim number of live points. Note that the large error
bars on the data set in Fig. B1 allow models that underfit with less than
three internal nodes (one at each vertex of the spike signal) to be probable.
The timing data is measured by the number of likelihood calculations the
algorithm makes. The shaded regions show the time taken on each nodal-
reconstruction model for the vanilla (lightest colour plotted), Post(n)25, and
Post(n)50 (darkest colour plotted) methods. Observe that the shapes of the
Post(n) method timing data coincides with those of the Bayes factors, as
explained in the text, and thus outperforms the vanilla method in obtaining
Bayes factors accurately.

efit from using this method. It is not guaranteed, however, as with
the vanilla case one may have identified a drop off in the Bayes
factors beyond n = 8 and stopped testing the more complex mod-
els thereafter. None the less, the Post(n) method could provide an
efficient means of verifying the drop off (for example one might
run the above with π (n) = [4, 9, 10, 11, 12, 13] as a fast means of
verifying the shape). Any gains in performance must be considered
against the need for repetition of the algorithm to obtain an estimate
of the error on the Bayes factors.
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