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We present a novel approach for setting initial conditions on the mode functions of the Mukhanov-
Sazaki equation. These conditions are motivated by minimisation of the renormalised stress-energy
tensor, and are valid for setting a vacuum state even in a context where the spacetime is changing
rapidly. Moreover, these alternative conditions are potentially observationally distinguishable. We
apply this to the kinetically dominated universe, and compare with the more traditional approach.

INTRODUCTION

Traditionally, quantum initial conditions for inflation
are set using the Bunch-Davies vacuum. This approach is
valid in de-Sitter space and other asymptotically static
spacetimes. Rapidly evolving spacetimes, however, do
not admit such an easy quantisation.

In a recent work [1], we showed that the classical equa-
tions of motion suggest that the universe in fact emerged
a rapidly evolving state, with the kinetic energy of the
inflaton dominating the potential in a pre-inflationary
phase. This can be used to set initial conditions on the
background variables such as the inflaton value and Hub-
ble parameter. In order to make contact with real obser-
vations, the effect that this phase has on the primordial
power spectrum requires a semi-classical quantum me-
chanical treatment of the comoving curvature perturba-
tion.

Hamiltonian diagonalisation is the simplest approach
for setting quantum initial conditions in a general space-
time, and derives the vacuum from the minimisation of
the Hamiltonian density. This approach has been criti-
cised in the past as it does not admit a consistent inter-
pretation in terms of particles [2, 3]. Other approaches
such as the adiabatic vacuum go some way to rescuing the
particle concept, but have additional theoretical issues.

The issue of the particle interpretation stems from an
attempt to apply a Minkowski spacetime concept outside
the region of its validity. We postulate that the minimi-
sation of an energy density is still an appropriate way
to define a vacuum. In order to avoid the issues raised
against Hamiltonian diagonalisation, we motivate our ini-
tial conditions from the minimisation of the renormalised
stress-energy density. Indeed, if one takes care to min-
imise the correct quantity (using the theory of quantum
fields in curved spacetime), then novel initial conditions
can be derived which differ from the traditional Hamil-
tonian diagonalisation conditions.

After the relevant background material is reviewed, we
develop a generic mechanism for setting initial condi-
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tions. These reduce to the Bunch-Davies case in asymp-
totically static spacetimes (such as de-Sitter space), but
yield different results otherwise. The aim is that these
should be more theoretically robust. Additionally, these
conditions are potentially distinguishable using observa-
tional data.

We then apply this procedure to the kinetically domi-
nated universe, but delay the observational analysis to a
later work.

BACKGROUND

We denote a general action via

SI =

∫
d4x
√
|g|LI , (1)

where LI is the Lagrangian density. We work in natural
units ~ = c = 1 and set the reduced Planck mass mp =

(8πG)
−1/2

= 1. Dots denote differentiation with respect
to cosmic time ḟ ≡ d

dtf , and primes denote differentiation

with respect to conformal time f ′ ≡ d
dηf .

We begin by briefly summarising the classical theory
of cosmological perturbations for a general scalar field,
before discussing the quantisation of such a theory

The classical action

Consider [4] a canonical scalar field φ minimally cou-
pled to gravity S = SG + Sφ with:

LG =
1

2
R, Lφ =

1

2
gµν∇µφ∇νφ− V (φ), (2)

Extremising this action with respect to the fields φ and
gµν recovers the Klein-Gordan and Einstein equations
respectively: (

gµν∇µ∇ν +
dV

dφ

)
φ = 0, (3)

Gµν ≡ Rµν −
1

2
gµνR = Tµν , (4)

where the stress-energy tensor is:

Tµν = ∇µφ∇νφ−
1

2
gµν∇αφ∇αφ+ gµνV (φ). (5)
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In cosmology, we assume that at zeroth order both
the metric gµν and scalar field φ are homogeneous
and isotropic. Applying these assumptions to equa-
tions (3) & (4), we find:

Ḣ +H2 = −1

3

(
φ̇2 − V (φ)

)
, (6)

0 = φ̈+ 3Hφ̇+
dV

dφ
, (7)

where the Hubble parameter H = ȧ/a.

Inflationary perturbations

One then considers perturbations about these back-
ground solutions

φ =φ(t) + δφ(t, x), (8)

ds2 =(1 + 2Φ)dt2 + 2a (∂iB − Si) dxidt
+ a2(1− 2Ψ)δijdxidxj

+
(
2∂i∂jE + 2∂(i F j) + hij

)
dxidxj , (9)

where without loss of generality, the vector fields Si, Fi
are divergenceless, and the tensor field hij is symmetric,
divergenceless and traceless.

We are interested in the gauge-invariant co-moving
curvature perturbation:

R ≡ Ψ− H

φ̇
δφ, (10)

since it is this quantity which defines the primordial
power spectrum for seeding cosmological perturbations.
Working in the co-moving gauge δφ = 0, and expanding
the action S to second order in R, gives:

S(2) =

∫
d4xa3 φ̇

2

H2

[
Ṙ2 − a−2(∂iR)

2
]
. (11)

Note that the dependence on V (φ) is implicit in the vari-
ables H, φ̇, a and R. Defining the Mukhanov variable,

v = zR, z =
aφ̇

H
, (12)

and transforming t into conformal time η =
∫ t
dτ/a(τ)

yields:

S(2) =

∫
dηd3x

[
(v′)

2 − (∂iv)
2

+
z′′

z
v2

]
. (13)

This is the canonically normalised action for a scalar field
with time-dependent “effective” mass m2

eff = −z′′/z.

QUANTISATION VIA HAMILTONIAN
DIAGONALISATION

We now consider the traditional quantisation of the
action (13) via Hamiltonian diagonalisation. This is a

standard method in the inflationary literature, but has
several theoretical issues which will be discussed. To be-
gin, one writes;

v =

∫
d3k

(2π)
3

[
akχk(η)eik·x + a†kχk

∗(η)e−ik·x
]
, (14)

which expresses the operator v as a superposition
of creation and annihilation operators {ak, a†k} [5],
with the mode functions written in separated form
uk = χk(η)eik·x. If one requires that the scalar field sat-
isfies the equations of motion, and that canonical com-
mutator relation:

[aka
†
k′ ] = (2π)

3
δ(3)(k− k′), (15)

holds true, then the temporal part χk(η) of the mode
functions uk must satisfy:

χk
′′ +

(
k2 − z′′

z

)
χk = 0, (16)

χk
′χk
∗ − χk

∗′χk = −i. (17)

The first of these is the classical equation of motion of
the action (13), whilst the second is a normalisation con-
straint.

Choosing a vacuum

The complex mode functions χk are not fully deter-
mined by condition (17). Although the overall phase of
the mode χk is unimportant, there is an additional degree
of freedom for each k to be determined. The choice of
this is equivalent to choosing a vacuum state |0〉, defined
by ak |0〉 = 0.

The traditional approach is to consider the Hamilto-
nian of the Mukhanov variable, which after normal or-
dering takes the form:

H =
1

2

∫
d3k

(2π)
3

[
aka−kFk(η) + a†ka

†
−kFk

∗(η)

+
(

2a†kak + δ(3)(0)
)
Ek(η)

]
, (18)

where

Ek(η) = |χ′k|2 + ω2
k|χk|2, Fk(η) = χ′k

2
+ ω2

kχk
2, (19)

ω2
k(η) = k2 − z′′

z
. (20)

It is therefore attractive to choose either (i) the vacuum
as an eigenstate of the Hamiltonian:

H |0〉 ∝ |0〉 ⇒ Fk = 0, (21)

or (ii) that the vacuum minimises the expected energy:

〈0|H|0〉 ∝
∫

d3k

(2π)
3Ek. (22)
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As can be shown with standard linear algebra, these two
conditions are equivalent, and result in the requirement
that:

|χk|2 =
1

2ωk
, χk

′ = −iωkχk. (23)

which provides enough information to set unambiguous
initial conditions for the mode equation (16). When
the condition (23) is satisfied, the Hamiltonian is diago-
nalised such that:

H(η0) =

∫
d3k

(2π)
3

(
a†kak +

1

2
δ(3)(0)

)
ωk(η0). (24)

We henceforth refer to (23) as the Hamiltonian diagonal-
ising (HD) vacuum choice.

From (24), one may easily show that a†k |0〉 is a state
with energy ωk(η0) and momentum k. One therefore

traditionally interprets the action of a†k at time η0 as
creating a “particle” from the vacuum. This is a well
established interpretation in flat Minkowski space.

Note that in general, the conditions (23) are only sat-
isfied at a specific time η0, and the vacuum is thus a
time-dependent notion. Indeed, it is straightforward to
show that at some different time η1, the expectation
〈0|H(η1)|0〉 of the Hamiltonian in the ground state |0〉
is in general larger than the minimum possible value at
η1. This is interpreted as the vacuum state |0〉 at η0

containing particles at other times η1.
Thus, if one sets these conditions at a time η0, one is

effectively setting the universe to be in the vacuum state
at that time. The expansion of the universe then excites
the vacuum, creating “particles” at later times η1. The
question as to what is the “correct” η0 at which to set
these conditions is currently an unresolved theoretical (or
indeed observational) issue.

Criticism of Hamiltonian diagonalisation

Astute readers will have spotted that the expected en-
ergy (22) is divergent. Whilst the implicit δ(3)(0) in the
proportionality constant of (22) is harmless, and merely
accounts for the contribution from the infinite volume of
space, there is a second divergence which requires closer
attention. For large k, Ek ∼ ωk ∼ k, and hence the
integral (22), which represents the energy density, is ul-
traviolet divergent as k4.

In traditional quantum field theory, this divergence is
subtracted as one only measures energy differences. This
is also applicable to spacetimes that are asymptotically
static (such as de-Sitter space). However, in changing
spacetimes, where the vacuum is time dependent, this
subtraction can only be performed at a single instant. If
one then advances in time by some finite amount, the
space-time generates an infinite particle density [2, 3].

This is clearly unphysical, causing some authors [3] to
discard Hamiltonian diagonalisation as an inappropriate
methodology for choosing a vacuum state.

ALTERNATIVE QUANTISATIONS

The particle concept can be somewhat rescued by con-
sidering the adiabatic vacuum. This is well defined when
the spacetime is changing slowly, as one can then perform
an adiabatic expansion. The nth order adiabatic vacuum
at time η0 is defined by matching the general solution
onto the nth order adiabatic expansion at time η0. This
has the satisfying property of more closely corresponding
to what a freely falling particle detector would measure,
and is generally agreed to be superior to Hamiltonian
diagonalisation.

However, there are still some issues with this vacuum.
First, it is only usable in slowly changing spacetimes, so
only goes halfway to solving the general problem. Sec-
ond, it introduces a further ambiguity in vacuum choice,
namely that of which value of n to choose. Since the
adiabatic expansion is asymptotic, it does not in general
converge for large n. One must pick a specific term of
the series to truncate at, and there is little theoretical
guidance as to what value n to choose.

We believe that the adiabatic vacuum is in fact trying
to rescue the particle concept unnecessarily. A parti-
cle interpretation is doomed to failure in general curved
spacetime because of the global nature of their definition.
Particles are defined in terms of field modes over a large
patch of the manifold. Whilst for higher k modes the en-
vironment looks effectively Minkowksi, low k modes are
sensitive to the large scale structure of spacetime.

It would be more sensible to base the notion of a vac-
uum not in terms of a “particle-less” state, but in terms
of the minimisation of a local energy density, such as
the 0-0 component of the stress-energy tensor. Unfor-
tunately being quadratic in the field φ, like the Hamilto-
nian, 〈0|T00|0〉 is also divergent.

In order to ameliorate this difficulty, we must adopt a
more sophisticated approach.

QUANTUM FIELDS IN CURVED SPACETIME

This is the semi-rigorous theory of fields in which grav-
ity is strong enough to generate curvature, but the quan-
tum mechanics only affects spacetime to low order. It
can therefore be thought of as a one-loop approximation
to quantum gravity.

Traditionally [6, 7], one considers a scalar field La-
grangian with mass m, with action:

S =

∫
d4x
√
|g|
(

1

2
gµν∇µφ∇νφ−

1

2
m2φ2

)
, (25)

where for simplicity we are considering the case of min-
imal coupling ξ = 0. In the context of FRW spacetime,
the modes are quantised as:

φ(x) =

∫
d3k

(2π)
3
a(η)

[
akχk(η)eik·x + a†kχk

∗(η)e−ik·x
]
,

(26)
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where the mode functions are written in separated form
uk = a(η)

−1
χk(η)eik·x. The additional conformal factor

of a(η)
−1

generates mode equations without first order
derivatives in η. Requiring that the scalar field satisfies
the equations of motion, and that the commutation rela-
tion (15) remain true, one finds that the mode functions
χk must satisfy:

χ′′k +

[
k2 + a2m2 − a′′

a

]
χk = 0, (27)

χk
′χk
∗ − χk

∗′χk = −i (28)

Application to inflation

The similarity between equations (16) and (27) is strik-
ing. It suggests solving for the quantum curvature per-
turbation is equivalent to solving a massless scalar field
in an alternative spacetime with scale factor satisfying:

a′′

a
=
z′′

z
. (29)

This may be explicitly solved for a(η) as:

a(η) = A z(η) +B z(η)

∫ η dx

z(x)
2 , (30)

where A and B are constants of integration.
Considering the special case of the inflating universe;

during inflation H ∝ φ̇ ∼ const, so z ∝ a. Thus, quantis-
ing the Mukhanov variable during inflation is equivalent
to quantising a massless, minimally coupled scalar field
on the same background spacetime. Note however, that
in a more general scenario, the two spacetimes will not
be the same.

MINIMISING THE RENORMALISED
STRESS-ENERGY TENSOR

Within the theory of quantum fields in curved space-
time, one is able to compute a renormalised stress-energy
tensor 〈0|Tµν |0〉ren. There are a variety of methods of do-
ing this, but if carried out carefully they yield the same
result.

Hadamard point splitting

We briefly recap the procedure for evaluating a renor-
malised stress-energy tensor via a Hadamard point split-
ting procedure. The Hadamard Green function is defined
by:

G(1)(x, x′) =
1

2
〈0|{φ(x), φ(x′)}|0〉 . (31)

The coincidence limit x′ → x formally would yield the
expectation

〈
0
∣∣φ2
∣∣0〉, but this is unfortunately diver-

gent. The strategy therefore is to subtract off de-Witt

Schwinger geometrical terms G
(1)
DS(x, x′) which may be

absorbed into a renormalisation of the “bare” constants
GB and ΛB . One then takes the coincidence limit to
yield a non-divergent quantity.

To form the stress-energy tensor from the Green func-
tion, one operates with a bi-scalar derivative function
Dµν(x, x′):

〈0|Tµν(x)|0〉ren = lim
x′→x

Dµν(x, x′)
[
G(1)(x, x′)−G(1)

DS(x, x′)
]
,

(32)

Dµν(x, x′) =
1

2
(∇µ∇ν′ +∇µ′∇ν)− 1

2
gµν∇α∇α

′

+ gµν
1

2
m2.

The Hadamard Green function (31) using the mode ex-
pansion (26) becomes:

G(1)(x, x′) =

∫
d3k

(2π)
3
a(η)a(η′)

(
χk(η)χk

∗(η′)eik·(x−x
′)+

χk
∗(η)χk(η′)e−ik·(x−x

′)
)
.

Inserting this expression into (32) will yield an expression
which depends on the specific choice of mode function
χk. We now regard this expression as a functional of the
independent variables

X = {χk, χk
∗, χk

′, χk
∗′}, (33)

and aim to minimise this with respect to the functions.

Since G
(1)
DS does not depend on these variables, this term

can be ignored for the purposes of extremisation. Fur-
ther, the functional derivatives such as δ

δχk
commute with

the limit expression, so in fact minimising the renor-
malised tensor with respect to the mode functions is
equivalent to naively minimising the traditional stress-
energy tensor (5). Inserting the mode function (26)
into (32) and taking the coincidence limit, one finds:

〈0|T00(x)|0〉ren =
1

2

∫
d3k

(2π)
3
a2

(χk
′ − a′

a
χk)(χk

∗′ − a′

a
χk
∗)

+
(
k2 +m2a2

)
χkχk

∗ + T̃ , (34)

where T̃ signifies the plethora of additional terms arising
from the renormalisation process that have no depen-
dence on the variables X . Minimising this with respect
to X subject to the constraint (28) yields the relations:

|χk|2 =
1

2
√
k2 +m2a2

, (35)

χk
′ =

(
−i
√
k2 +m2a2 +

a′

a

)
χk. (36)

Application to the Mukhanov variable.

As described earlier, in order to apply this formalism
to the inflationary Mukhanov variable, one should take
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set m = 0 and replace a with z:

|χk|2 =
1

2k
, χk

′ =

(
−ik +

z′

z

)
χk. (37)

This should now be compared with the more usual HD
conditions (23). Deep inside the horizon (k � −z′/z)
these two initial conditions are equivalent, but yield very
different answers for infra-red modes (small k). The sec-
ond of these equations may be re-written in a more illu-
minating form: (χk

z

)′
= −ik

(χk

z

)
, (38)

which suggests that the co-moving curvature R = v/z is
set with a “positive frequency mode” independent from
any spacetime variation.

It is important to recognise setting these conditions at
η0 is equivalent to forcing the universe into a vacuum
state at that moment, but there is minimal theoretical
guidance as to when this should be[8]. Indeed, there is
little reason to imagine that the universe should be in
a vacuum state at any given moment. However, these
conditions could also be used to build a formalism of
excited states.

It is also important to realise that this vacuum does
not claim to be interpretable in terms of particles. It
is merely the mode function that minimises the renor-
malised stress tensor. In the language of Hamiltonian
diagonalisation, or adiabatic vacuums, it would be a su-
perposition of “particle states”.

Reference [9] provides a review (particularly in the ap-
pendix) of various choices of initial conditions analogous
to (23) and (37). It is interesting to note that the Daniels-
son vacuum [10, 11] bears a striking similarity to the
renormalisation initial conditions (37) we have derived,
but is instead derived from phenomenological grounds by
imposing initial conditions around a high energy cutoff.

RENORMALISING THE KINETICALLY
DOMINATED UNIVERSE

We now consider these observations in the context of
the kinetically dominated universe. It was recently ob-
served [1] that the classical solutions to the evolution
equations (3) & (6) emerge almost always from a kinet-
ically dominated phase with φ̇2 � V (φ). In this regime,
there is a significant period of cosmic time in which the
theory of quantum fields in curved spacetime is valid.
In this semi-classical pre-inflationary context, one finds
that φ̇ ∝ H and hence z ∝ a. In the same manner as
a de-Sitter universe, quantising the co-moving curvature
perturbation is equivalent to quantising a massless scalar
field on the same background spacetime. In this case
though, the scale factor a ∝ η1/2, so the mode equations

10−3

10−2

10−1

100

101

102

10−3 10−2 10−1 100 101 102

kη0

RST |Ak|
HD |Ak|

RST |Bk|
HD |Bk|

FIG. 1. The modulus of the Ak and Bk coefficients in a kinet-
ically dominated universe for the Hamiltonian diagonalising
vacuum (HD) and the vacuum from the renormalised stress
tensor (RST). Under these conditions, the universe will be in
a vacuum state at conformal time η0. Note that at large k,
the mode functions tend to Ak = 0, Bk = 1.

have the general solution:

χk(η) =
1

2

√
πη
(
AkH

(1)
0 (kη) +BkH

(2)
0 (kη)

)
,

1 = |Bk|2 − |Ak|2, (39)

where without loss of generality we assume Ak is real.
Applying HD conditions (23), or our new renormalised
stress tensor conditions (37) yields different values for
Ak and Bk, as indicated in Figure 1. This difference is
potentially observationally distinguishable, and will be
analysed in a following paper.

CONCLUSIONS

We have presented a novel procedure for setting the ini-
tial conditions on the Mukhanov-Sazaki equation. We de-
fine the vacuum state via the instantaneous minimisation
of the renormalised stress-energy tensor. This procedure
is valid for any background cosmology, independent of
the thorny issue of a particle-type concept. It reduces to
the Bunch-Davies vacuum in an asymptotically static re-
gion. Further, it makes theoretical predictions that may
be observationally testable.
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