1,304 research outputs found

    Cultural Resources Survey of the Leander Rehabilitation Center, Williamson County, Texas

    Get PDF
    In August-September 1996, personnel from Prewitt and Associates, Inc., conducted a cultural resources survey of ca. 725 acres of the former Leander Rehabilitation Center. The project area lies adjacent to U.S. Highway 183 and FM 620 in southern Williamson County, Texas. The survey resulted in additional documentation of one previously recorded prehistoric archeological site (41 WM452), the identification and recording of four historic archeological sites (41WM892, 41WM893, 41WM896, and 41WM897), and reconnaissance-level documentation of 45 historic buildings and structures. Site 41WM452 is an extensive upland lithic scatter and lithic procurement site which lacks subsurface deposits, features, and datable materials. Site 41WM892 is a wood-chopper camp that contains a number of rock alignments and limited artifact deposits dating to the first decade of the twentieth century. Site 41WM893 is a remnant of a railroad spur used during the 1937-1941 construction of Marshall Ford Dam (now Mansfield Dam). Site 41WM896 contains a small number of features and sparse artifact deposits associated with the 1937-1945 Rhodes farmstead. Site 41WM897 is an isolated historic well with unknown associations. None of these archeological sites contains important information, and it is recommended that they be considered not eligible for listing in the National Register of Historic Places or for designation as State Archeological Landmarks. The 45 buildings and structures, at 36 locations, are associated with the former State Dairy and Hog Farm. This farm was established in 1942, expanded after 1945, and reached its peak years of production as a hog farm between 1950 and the late 1960s, Created to serve the needs of the State Board of Control and the State Hospital, the facility is significant for its success in food production for eleemosynary institutions in Austin and throughout Texas, as well as for its role in the application of modern psychiatric treatment based on the therapeutic value of manual labor. Among the surveyed resources are dwellings, an office and warehouse building, a dormitory, a variety of agricultural buildings and structures, and infrastructural elements, all built between 1943 and 1955. Twenty-one of the 45 surveyed resources are recommended as being eligible for listing in the National Register of Historic Places under Criteria A and C as Contributing resources in a historic district and for designation as State Archeological Landmarks

    Passive Thermal Management Systems Employing Shape Memory Alloys

    Get PDF
    A thermal management system includes a first substrate having a first conductive inner surface. A second substrate has a second conductive inner surface. A connecting structure is attached to the first and second substrates to space apart the first and second inner surfaces defining an insulating space for a single architecture. One or more passively-acting elements are attached to the inner surface of at least one substrate and including a shape memory material such as a shape memory alloy (SMA). The SMA passively reacts to the temperature of the first substrate by thermally contacting or separating from the second inner surface of the second substrate for the control of the conduction of heat energy in either direction

    A State-Wide Union Catalog Feasibility Study: Final Report on Project III-D FY 1976

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems Laborator

    Color Changing Hydrogen Sensors

    Get PDF
    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous benefits over the traditional hydrogen sensors: The technology has excellent temperature stability (4K to 373 K), it can be used in cryogenic fluid applications, it is easy to apply and remove; it requires no power to operate; it has a quick response time; the leak points can be detected visually or electronically; it is nonhazardous, thus environmentally friendly; it can be reversible or irreversible; it does not require on-site monitoring; has a long shelf life; the detector is very durable; and the technology is inexpensive to manufacture

    Chemochromic Detector for Sensing Gas Leakage and Process for Producing the Same

    Get PDF
    A chemochromic sensor for detecting a combustible gas, such as hydrogen, includes a chemochromic pigment and a textile polymer. The textile material includes a chemochromic pigment operably responsive to a combustible gas. The combustible gas sensing textile material can be made by melt spinning, solution spinning, or other similar techniques. In a preferred embodiment carbon nanotubes are used with the textile material which will increase the material strength and alter the thermal and/or electrical properties. These textiles woven into fabrics can provide garments not only with hydrogen sensing capabilities but the carbon nanotubes will allow for a range of sensing capabilities to be embedded (i.e. gas, health, and electronic monitors) within the garments

    Foam/aerogel composite materials for thermal and acoustic insulation and cryogen storage

    Get PDF
    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen

    Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    Get PDF
    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed

    The Contribution of TP-AGB and RHeB Stars to the Near-IR Luminosity of Local Galaxies: Implications for Stellar Mass Measurements of High Redshift Galaxies

    Get PDF
    Using high spatial resolution HST WFC3 and ACS imaging of resolved stellar populations, we constrain the contribution of thermally-pulsing asymptotic giant branch (TP-AGB) stars and red helium burning (RHeB) stars to the 1.6 um near-infrared (NIR) luminosities of 23 nearby galaxies. The TP-AGB phase contributes as much as 17% of the integrated F160W flux, even when the red giant branch is well populated. The RHeB population contribution can match or even exceed the TP-AGB contribution, providing as much as 21% of the integrated F160W light. The NIR mass-to-light (M/L) ratio should therefore be expected to vary significantly due to fluctuations in the star formation rate over timescales from 25 Myr to several Gyr. We compare our observational results to predictions based on optically derived star formation histories and stellar population synthesis (SPS) models, including models based on the Padova isochrones (used in popular SPS programs). The SPS models generally reproduce the expected numbers of TP-AGB stars in the sample. The same SPS models, however, give a larger discrepancy in the F160W flux contribution from the TP-AGB stars, over-predicting the flux by a weighted mean factor of 2.3 +/-0.8. This larger offset is driven by the prediction of modest numbers of high luminosity TP-AGB stars at young (<300 Myrs) ages. The best-fit SPS models simultaneously tend to under-predict the numbers and fluxes of stars on the RHeB sequence, typically by a factor of 2.0+/-0.6 for galaxies with significant numbers of RHeBs. Coincidentally, over-prediction of the TP-AGB and under-prediction of the RHeBs result in a NIR M/L ratio largely unchanged for a rapid star formation rate. However, the NIR-to-optical flux ratio of galaxies could be significantly smaller than AGB-rich models would predict, an outcome that has been observed in some intermediate redshift post-starburst galaxies. (Abridged)Comment: 28 Pages, 12 Figures, 5 Tables, Accepted for Publication in the Astrophysical Journa

    Chemochromic Detector for Sensing Gas Leakage and Process for Producing the Same

    Get PDF
    A chemochromic sensor for detecting a combustible gas, such as hydrogen, includes a chemochromic pigment mechanically mixed with a polymer and molded into a rigid or pliable shape. In a preferred embodiment, the chemochromic detector is within the material which is molded into a manufactured part, said part becoming the detector itself. The detector is robust and easily modifiable for a variety of applications and environmental conditions, such as atmospheres of inert gas, hydrogen gas, or mixtures of gases, or in environments that have variable temperature, including high temperatures such as above 100 C. and low temperatures such as below -196 C

    Multi-Dimensional Damage Detection

    Get PDF
    Methods and systems may provide for a structure having a plurality of interconnected panels, wherein each panel has a plurality of detection layers separated from one another by one or more non-detection layers. The plurality of detection layers may form a grid of conductive traces. Additionally, a monitor may be coupled to each grid of conductive traces, wherein the monitor is configured to detect damage to the plurality of interconnected panels in response to an electrical property change with respect to one or more of the conductive traces. In one example, the structure is part of an inflatable space platform such as a spacecraft or habitat
    corecore