53 research outputs found

    Harvesting Candidate Genes Responsible for Serious Adverse Drug Reactions from a Chemical-Protein Interactome

    Get PDF
    Identifying genetic factors responsible for serious adverse drug reaction (SADR) is of critical importance to personalized medicine. However, genome-wide association studies are hampered due to the lack of case-control samples, and the selection of candidate genes is limited by the lack of understanding of the underlying mechanisms of SADRs. We hypothesize that drugs causing the same type of SADR might share a common mechanism by targeting unexpectedly the same SADR-mediating protein. Hence we propose an approach of identifying the common SADR-targets through constructing and mining an in silico chemical-protein interactome (CPI), a matrix of binding strengths among 162 drug molecules known to cause at least one type of SADR and 845 proteins. Drugs sharing the same SADR outcome were also found to possess similarities in their CPI profiles towards this 845 protein set. This methodology identified the candidate gene of sulfonamide-induced toxic epidermal necrolysis (TEN): all nine sulfonamides that cause TEN were found to bind strongly to MHC I (Cw*4), whereas none of the 17 control drugs that do not cause TEN were found to bind to it. Through an insight into the CPI, we found the Y116S substitution of MHC I (B*5703) enhances the unexpected binding of abacavir to its antigen presentation groove, which explains why B*5701, not B*5703, is the risk allele of abacavir-induced hypersensitivity. In conclusion, SADR targets and the patient-specific off-targets could be identified through a systematic investigation of the CPI, generating important hypotheses for prospective experimental validation of the candidate genes

    Diagnostic value of fine-needle aspiration biopsy for breast mass: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fine-needle aspiration biopsy (FNAB) of the breast is a minimally invasive yet maximally diagnostic method. However, the clinical use of FNAB has been questioned. The purpose of our study was to establish the overall value of FNAC in the diagnosis of breast lesions.</p> <p>Methods</p> <p>After a review and quality assessment of 46 studies, sensitivity, specificity and other measures of accuracy of FNAB for evaluating breast lesions were pooled using random-effects models. Summary receiver operating characteristic curves were used to summarize overall accuracy. The sensitivity and specificity for the studies data (included unsatisfactory samples) and underestimation rate of unsatisfactory samples were also calculated.</p> <p>Results</p> <p>The summary estimates for FNAB in diagnosis of breast carcinoma were as follows (unsatisfactory samples was temporarily exluded): sensitivity, 0.927 (95% confidence interval [CI], 0.921 to 0.933); specificity, 0.948 (95% CI, 0.943 to 0.952); positive likelihood ratio, 25.72 (95% CI, 17.35 to 28.13); negative likelihood ratio, 0.08 (95% CI, 0.06 to 0.11); diagnostic odds ratio, 429.73 (95% CI, 241.75 to 763.87); The pooled sensitivity and specificity for 11 studies, which reported unsatisfactory samples (unsatisfactory samples was considered to be positive in this classification) were 0.920 (95% CI, 0.906 to 0.933) and 0.768 (95% CI, 0.751 to 0.784) respectively. The pooled proportion of unsatisfactory samples that were subsequently upgraded to various grade cancers was 27.5% (95% CI, 0.221 to 0.296).</p> <p>Conclusions</p> <p>FNAB is an accurate biopsy for evaluating breast malignancy if rigorous criteria are used. With regard to unsatisfactory samples, futher invasive procedures are required in order to minimize the chance of a missed diagnosis of breast cancer.</p

    Genome-Wide Association Study of Treatment Refractory Schizophrenia in Han Chinese

    Get PDF
    We report the first genome-wide association study of a joint analysis using 795 Han Chinese individuals with treatment-refractory schizophrenia (TRS) and 806 controls. Three loci showed suggestive significant association with TRS were identified. These loci include: rs10218843 (P = 3.04×10−7) and rs11265461 (P = 1.94×10−7) are adjacent to signaling lymphocytic activation molecule family member 1 (SLAMF1); rs4699030 (P = 1.94×10−6) and rs230529 (P = 1.74×10−7) are located in the gene nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFKB1); and rs13049286 (P = 3.05×10−5) and rs3827219 (P = 1.66×10−5) fall in receptor-interacting serine/threonine-protein kinase 4 (RIPK4). One isolated single nucleotide polymorphism (SNP), rs739617 (P = 3.87×10−5) was also identified to be associated with TRS. The -94delATTG allele (rs28362691) located in the promoter region of NFKB1 was identified by resequencing and was found to associate with TRS (P = 4.85×10−6). The promoter assay demonstrated that the -94delATTG allele had a significant lower promoter activity than the -94insATTG allele in the SH-SY5Y cells. This study suggests that rs28362691 in NFKB1 might be involved in the development of TRS

    Synergistic antitumour effects of rapamycin and oncolytic reovirus.

    Get PDF
    There are currently numerous oncolytic viruses undergoing clinical trial evaluation in cancer patients and one agent, Talimogene laherparepvec, has been approved for the treatment of malignant melanoma. This progress highlights the huge clinical potential of this treatment modality, and the focus is now combining these agents with conventional anticancer treatments or agents that enhance viral replication, and thereby oncolysis, in the tumour microenvironment. We evaluated the combination of reovirus with rapamycin in B16F10 cell, a murine model of malignant melanoma, based on potential mechanisms by which mTOR inhibitors might enhance viral oncolysis. Rapamycin was not immunomodulatory in that it had no effect on the generation of an antireovirus-neutralising antibody response in C57/black 6 mice. The cell cycle effects of reovirus (increase G0/G1 fraction) were unaffected by concomitant or sequential exposure of rapamycin. However, rapamycin attenuated viral replication if given prior or concomitantly with reovirus and similarly reduced reovirus-induced apoptotic cell death Annexin V/PI and caspase 3/7 activation studies. We found clear evidence of synergistic antitumour effects of the combination both in vitro and in vivo, which was sequence dependent only in the in vitro setting. In conclusion, we have demonstrated synergistic antitumour efficacy of reovirus and rapamycin combination

    FluShuffle and FluResort: new algorithms to identify reassorted strains of the influenza virus by mass spectrometry

    No full text
    Abstract Background Influenza is one of the oldest and deadliest infectious diseases known to man. Reassorted strains of the virus pose the greatest risk to both human and animal health and have been associated with all pandemics of the past century, with the possible exception of the 1918 pandemic, resulting in tens of millions of deaths. We have developed and tested new computer algorithms, FluShuffle and FluResort, which enable reassorted viruses to be identified by the most rapid and direct means possible. These algorithms enable reassorted influenza, and other, viruses to be rapidly identified to allow prevention strategies and treatments to be more efficiently implemented. Results The FluShuffle and FluResort algorithms were tested with both experimental and simulated mass spectra of whole virus digests. FluShuffle considers different combinations of viral protein identities that match the mass spectral data using a Gibbs sampling algorithm employing a mixed protein Markov chain Monte Carlo (MCMC) method. FluResort utilizes those identities to calculate the weighted distance of each across two or more different phylogenetic trees constructed through viral protein sequence alignments. Each weighted mean distance value is normalized by conversion to a Z-score to establish a reassorted strain. Conclusions The new FluShuffle and FluResort algorithms can correctly identify the origins of influenza viral proteins and the number of reassortment events required to produce the strains from the high resolution mass spectral data of whole virus proteolytic digestions. This has been demonstrated in the case of constructed vaccine strains as well as common human seasonal strains of the virus. The algorithms significantly improve the capability of the proteotyping approach to identify reassorted viruses that pose the greatest pandemic risk.</p

    Outcome of thoracic organ transplantation for adults with congenital heart disease

    No full text
    Free Paper Session: Cardiac Surger

    Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty.

    Get PDF
    Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T. evansi strain from China and compared it to the T. b. brucei reference strain. The annotated T. evansi genome shows extensive similarity to the reference, with 94.9% of the predicted T. b. brucei coding sequences (CDS) having an ortholog in T. evansi, and 94.6% of the non-repetitive orthologs having a nucleotide identity of 95% or greater. Interestingly, several procyclin-associated genes (PAGs) were disrupted or not found in this T. evansi strain, suggesting a selective loss of function in the absence of the insect life-cycle stage. Surprisingly, orthologous sequences were found in T. evansi for all 978 nuclear CDS predicted to represent the mitochondrial proteome in T. brucei, although a small number of these may have lost functionality. Consistent with previous results, the F1FO-ATP synthase γ subunit was found to have an A281 deletion, which is involved in generation of a mitochondrial membrane potential in the absence of kDNA. Candidates for CDS that are absent from the reference genome were identified in supplementary de novo assemblies of T. evansi reads. Phylogenetic analyses show that the sequenced strain belongs to a dominant group of clonal T. evansi strains with worldwide distribution that also includes isolates classified as T. equiperdum. At least three other types of T. evansi or T. equiperdum have emerged independently. Overall, the elucidation of the T. evansi genome sequence reveals extensive similarity of T. brucei and supports the contention that T. evansi should be classified as a subspecies of T. brucei
    corecore