161 research outputs found

    Is there a gender difference in noninvasive coronary imaging? Multislice computed tomography for noninvasive detection of coronary stenoses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multislice computed tomography (MSCT) coronary angiography is the foremost alternative to invasive coronary angiography.</p> <p>Methods</p> <p>We sought to compare the diagnostic accuracy of MSCT in female and male patients with suspected coronary disease. Altogether 50 women and 95 men underwent MSCT with 0.5 mm detector collimation. Coronary artery stenoses of at least 50% on conventional coronary angiography were considered significant.</p> <p>Results</p> <p>The coronary vessel diameters of all four main coronary artery branches were significantly larger in men than in women. The diagnostic accuracy of MSCT in identifying patients with coronary artery disease was significantly lower for women (72%) compared with men (89%, <it>p </it>< 0.05). Also sensitivity (70% vs. 95%), positive predictive value (64% vs. 93%), and the rate of nondiagnostic examinations (14% vs. 4%, all: <it>p </it>< 0.05) were significantly worse for women. The effective radiation dose of MSCT coronary angiography was significantly higher in the examination of women (13.7 ± 1.2 mSv) than of men (11.7 ± 0.9 mSv, <it>p </it>< 0.001), mainly as a result of the fact that the radiosensitive female breast (contributing 24.5% of the dose in women) is in the x-ray path.</p> <p>Conclusion</p> <p>Noninvasive coronary angiography with MSCT might be less accurate and sensitive for women than men. Also, women are exposed to a significantly higher effective radiation dose than men.</p

    Tu Weiming, Liberal Education, and the Dialogue of the Humanities

    Get PDF
    This chapter discusses aspects of the work of Tu Weiming in relation to the idea of a liberal education. It does this in the context of broader questions about the nature, problems, and possibilities of comparative philosophy. Dialogue emerges in Tu’s work both as a substantive topic and as integral to aspects of his approach to philosophy and to his commitment to the dissemination of Confucian thought. In spite of Tu’s obvious success in many respects, some problems with this engagement with and in dialogue are identified, and these in turn are related to his treatment of questions of language and translation – in particular to his somewhat negative attitude to philosophy’s linguistic turn. The comparison of Confucian approaches with the idea of a liberal education enables reconsideration of ideas that are central to education, and in so doing the discussion demonstrates the value of comparative approaches in the study of education

    Preliminary Study of Prospective ECG-Gated 320-Detector CT Coronary Angiography in Patients with Ventricular Premature Beats

    Get PDF
    BACKGROUND: To study the applicability of prospective ECG-gated 320-detector CT coronary angiography (CTCA) in patients with ventricular premature beats (VPB), and determine the scanning mode that best maximizes image quality and reduces radiation dose. METHODS: 110 patients were divided into a VPB group (60 cases) and a control group (50 cases) using CTCA. All the patients then underwent coronary angiography (CAG) within one month. CAG served as a reference standard through which the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of CTCA in diagnosing significant coronary artery stenosis (luminal stenosis ≥50%) could be analyzed. The two radiologists with more than 3 years' experience in cardiac CT each finished the image analysis after consultation. A personalized scanning mode was adopted to compare image quality and radiation dose between the two groups. METHODOLOGY/PRINCIPAL FINDINGS: At the coronary artery segment level, sensitivity, specificity, PPV, and NPV in the premature beat group were 92.55%, 98.21%, 88.51%, and 98.72% respectively. In the control group these values were found to be 95.79%, 98.42%, 90.11%, and 99.28% respectively. Between the two groups, specificity, sensitivity PPV, NPV was no significant difference. The two groups had no significant difference in image quality score (P>0.05). Heart rate (77.20±12.07 bpm) and radiation dose (14.62±1.37 mSv) in the premature beat group were higher than heart rate (58.72±4.73 bpm) and radiation dose (3.08±2.35 mSv) in the control group. In theVPB group, the radiation dose (34.55±7.12 mSv) for S-field scanning was significantly higher than the radiation dose (15.10±1.12 mSv) for M-field scanning. CONCLUSIONS/SIGNIFICANCE: With prospective ECG-gated scanning for VPB, the diagnostic accuracy of coronary artery stenosis is very high. Scanning field adjustment can reduce radiation dose while maintaining good image quality. For patients with slow heart rates and good rhythm, there was no statistically significant difference in image quality

    Critical thinking for 21st-century education: A cyber-tooth curriculum?

    Get PDF
    It is often assumed that the advent of digital technologies requires fundamental change to the curriculum and to the teaching and learning approaches used in schools around the world to educate this generation of “digital natives” or the “net generation”. This article analyses the concepts of 21st-century skills and critical thinking, to understand how these aspects of learning might contribute to a 21st-century education. The author argues that, although both critical thinking and 21st-century skills are indeed necessary in a curriculum for a 21st-century education, they are not sufficient, even in combination. The role of knowledge and an understanding of differing cultural perspectives and values indicate that education should also fit local contexts in a global world and meet the specific needs of students in diverse cultures. It should also fit the particular technical and historical demands of the 21st century in relation to digital skills

    Creating Creative Technologists: playing with(in) education

    Get PDF
    Since the industrial revolution, the organization of knowledge into distinct scientific, technical or creative categories has resulted in educational systems designed to produce and validate particular occupations. The methods by which students are exposed to different kinds of knowledge are critical in creating and reproducing individual, professional or cultural identities. (“I am an Engineer. You are an Artist”). The emergence of more open, creative and socialised technologies generates challenges for discipline-based education. At the same time, the term “Creative Technologies” also suggests a new occupational category (“I am a Creative Technologist”). This chapter presents a case-study of an evolving ‘anti-disciplinary’ project-based degree that challenges traditional degree structures to stimulate new forms of connective, imaginative and explorative learning, and to equip students to respond to a changing world. Learning is conceived as an emergent process; self-managed by students through critique and open peer review. We focus on ‘playfulness’ as a methodology for achieving multi-modal learning across the boundaries of art, design, computer science, engineering, games and entrepreneurship. In this new cultural moment, playfulness also re-frames the institutional identities of teacher and learner in response to new expectations for learning

    Standardised lesion segmentation for imaging biomarker quantitation: a consensus recommendation from ESR and EORTC.

    Get PDF
    BACKGROUND: Lesion/tissue segmentation on digital medical images enables biomarker extraction, image-guided therapy delivery, treatment response measurement, and training/validation for developing artificial intelligence algorithms and workflows. To ensure data reproducibility, criteria for standardised segmentation are critical but currently unavailable. METHODS: A modified Delphi process initiated by the European Imaging Biomarker Alliance (EIBALL) of the European Society of Radiology (ESR) and the European Organisation for Research and Treatment of Cancer (EORTC) Imaging Group was undertaken. Three multidisciplinary task forces addressed modality and image acquisition, segmentation methodology itself, and standards and logistics. Devised survey questions were fed via a facilitator to expert participants. The 58 respondents to Round 1 were invited to participate in Rounds 2-4. Subsequent rounds were informed by responses of previous rounds. RESULTS/CONCLUSIONS: Items with ≥ 75% consensus are considered a recommendation. These include system performance certification, thresholds for image signal-to-noise, contrast-to-noise and tumour-to-background ratios, spatial resolution, and artefact levels. Direct, iterative, and machine or deep learning reconstruction methods, use of a mixture of CE marked and verified research tools were agreed and use of specified reference standards and validation processes considered essential. Operator training and refreshment were considered mandatory for clinical trials and clinical research. Items with a 60-74% agreement require reporting (site-specific accreditation for clinical research, minimal pixel number within lesion segmented, use of post-reconstruction algorithms, operator training refreshment for clinical practice). Items with ≤ 60% agreement are outside current recommendations for segmentation (frequency of system performance tests, use of only CE-marked tools, board certification of operators, frequency of operator refresher training). Recommendations by anatomical area are also specified

    Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control

    Get PDF
    The aim of this study was to assess the diagnostic accuracy of dual-source computed tomography (DSCT) for evaluation of coronary artery disease (CAD) in a population with extensive coronary calcifications without heart rate control. Thirty patients (24 male, 6 female, mean age 63.1±11.3 years) with a high pre-test probability of CAD underwent DSCT coronary angiography and invasive coronary angiography (ICA) within 14±9 days. No beta-blockers were administered prior to the scan. Two readers independently assessed image quality of all coronary segments with a diameter ≥1.5 mm using a four-point score (1: excellent to 4: not assessable) and qualitatively assessed significant stenoses as narrowing of the luminal diameter >50%. Causes of false-positive (FP) and false-negative (FN) ratings were assigned to calcifications or motion artifacts. ICA was considered the standard of reference. Mean body mass index was 28.3±3.9 kg/m(2) (range 22.4–36.3 kg/m(2)), mean heart rate during CT was 70.3±14.2 bpm (range 47–102 bpm), and mean Agatston score was 821±904 (range 0–3,110). Image quality was diagnostic (scores 1–3) in 98.6% (414/420) of segments (mean image quality score 1.68±0.75); six segments in three patients were considered not assessable (1.4%). DSCT correctly identified 54 of 56 significant coronary stenoses. Severe calcifications accounted for false ratings in nine segments (eight FP/one FN) and motion artifacts in two segments (one FP/one FN). Overall sensitivity, specificity, positive and negative predictive value for evaluating CAD were 96.4, 97.5, 85.7, and 99.4%, respectively. First experience indicates that DSCT coronary angiography provides high diagnostic accuracy for assessment of CAD in a high pre-test probability population with extensive coronary calcifications and without heart rate control

    A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics

    Get PDF
    Background: Genome-wide data are increasingly important in the clinical evaluation of human disease. However, the large number of variants observed in individual patients challenges the efficiency and accuracy of diagnostic review. Recent work has shown that systematic integration of clinical phenotype data with genotype information can improve diagnostic workflows and prioritization of filtered rare variants. We have developed visually interactive, analytically transparent analysis software that leverages existing disease catalogs, such as the Online Mendelian Inheritance in Man database (OMIM) and the Human Phenotype Ontology (HPO), to integrate patient phenotype and variant data into ranked diagnostic alternatives. Methods: Our tool, “OMIM Explorer” (http://www.omimexplorer.com), extends the biomedical application of semantic similarity methods beyond those reported in previous studies. The tool also provides a simple interface for translating free-text clinical notes into HPO terms, enabling clinical providers and geneticists to contribute phenotypes to the diagnostic process. The visual approach uses semantic similarity with multidimensional scaling to collapse high-dimensional phenotype and genotype data from an individual into a graphical format that contextualizes the patient within a low-dimensional disease map. The map proposes a differential diagnosis and algorithmically suggests potential alternatives for phenotype queries—in essence, generating a computationally assisted differential diagnosis informed by the individual’s personal genome. Visual interactivity allows the user to filter and update variant rankings by interacting with intermediate results. The tool also implements an adaptive approach for disease gene discovery based on patient phenotypes. Results: We retrospectively analyzed pilot cohort data from the Baylor Miraca Genetics Laboratory, demonstrating performance of the tool and workflow in the re-analysis of clinical exomes. Our tool assigned to clinically reported variants a median rank of 2, placing causal variants in the top 1 % of filtered candidates across the 47 cohort cases with reported molecular diagnoses of exome variants in OMIM Morbidmap genes. Our tool outperformed Phen-Gen, eXtasy, PhenIX, PHIVE, and hiPHIVE in the prioritization of these clinically reported variants. Conclusions: Our integrative paradigm can improve efficiency and, potentially, the quality of genomic medicine by more effectively utilizing available phenotype information, catalog data, and genomic knowledge

    The emerging role of magnetic resonance imaging and multidetector computed tomography in the diagnosis of dilated cardiomyopathy

    Get PDF
    Magnetic resonance imaging and multidetector computed tomography are new imaging methods that have much to offer clinicians caring for patients with dilated cardiomyopathy. In this article we briefly describe the clinical, pathophysiological and histological aspects of dilated cardiomyopathy. Then we discuss in detail the use of both imaging methods for measurement of chamber size, global and regional function, for myocardial tissue characterisation, including myocardial viability assessment, and determination of arrhythmogenic substrate, and their emerging role in cardiac resynchronisation therapy
    corecore