364 research outputs found

    A global dataset of publicly available dengue case count data.

    Get PDF
    OpenDengue is a global database of dengue case data collated from public sources and standardised and formatted to facilitate easy reanalysis. Dataset version 1.2 of this database contains information on over 56 million dengue cases from 102 countries between 1924 and 2023, making it the largest and most comprehensive dengue case database currently available. Over 95% of records are at the weekly or monthly temporal resolution and subnational data is available for 40 countries. To build OpenDengue we systematically searched databases, ministry of health websites, peer reviewed literature and Pro-MED mail reports and extracted denominator-based case count data. We undertake standardisation and error checking protocols to ensure consistency and resolve discrepancies. We meticulously documented the extraction process to ensure records are attributable and reproducible. The OpenDengue database remains under development with plans for further disaggregation and user contributions are encouraged. This new dataset can be used to better understand the long-term drivers of dengue transmission, improve estimates of disease burden, targeting and evaluation of interventions and improving future projections

    Radiation-associated sarcoma of the skull base after irradiation for pituitary adenoma

    Get PDF
    Secondary, radiation-induced neoplasms represent a significant long-term risk after radiation treatment, and radiation-induced sarcomas (RAS) have an especially poor prognosis. These have rarely been reported after irradiation for pituitary adenomas

    An international, phase III randomized trial in patients with mucinous epithelial ovarian cancer (mEOC/GOG 0241) with long-term follow-up: and experience of conducting a clinical trial in a rare gynecological tumor

    Get PDF
    Objectives We evaluated four different treatment regimens for advanced-stage mucinous epithelial ovarian cancer. Methods We conducted a multicenter randomized factorial trial (UK and US). Patients were diagnosed with primary mEOC: FIGO stage II–IV or recurrence after stage I disease. Treatment arms were paclitaxel-carboplatin, oxaliplatin-capecitabine, paclitaxel-carboplatin-bevacizumab, or oxaliplatin-capecitabine-bevacizumab. Chemotherapy was given 3-weekly for 6 cycles, and bevacizumab (3-weekly) was continued as maintenance (for 12 cycles). Endpoints included overall-survival (OS), progression-free survival (PFS), toxicity and quality of life (QoL). Results The trial stopped after 50 patients were recruited due to slow accrual. Median follow-up was 59 months. OS hazard ratios (HR) for the two main comparisons were: 0.78 (p = 0.48) for Oxal-Cape vs. Pac-Carbo (each with/without bevacizumab), and 1.04 (p = 0.92) for bevacizumab vs. no bevacizumab. Corresponding PFS HRs were: 0.84 and 0.80. Retrospective central pathology review revealed only 45% (18/40) cases with available material had confirmed primary mEOC. Among these, OS HR for Oxal-Cape vs. Pac-Carbo was 0.36 (p = 0.14); PFS HR = 0.62 (p = 0.40). Grade 3–4 toxicity was seen in 61% Pac-Carbo, 61% Oxal-Cape, 54% Pac-Carbo-Bev, and 85% Oxal-Cape-Bev. QoL was similar between the four arms. Conclusion mEOC/GOG0241 represents an example of a randomized rare tumor trial. Logistical challenges led to early termination, including difficulties in local histopathological diagnosis and accessing drugs outside their labelled indication. There was misalignment between central funders who support clinical trials in rare cancers and the deprioritisation of such work by those managing and funding research at a local level. Rare cancer trials should include centralised pathology review before treatment. Clinical trial registry number: ISRCTN83438782

    Radiation induced angiosarcoma a sequela of radiotherapy for breast cancer following conservative surgery

    Get PDF
    Radiation induced angiosarcomas (RIA) can affect breast cancer patients who had radiotherapy following conservative breast surgery. They are very rare tumors and often their diagnosis is delayed due to their benign appearance and difficulty in differentiation from radiation induced skin changes. Therefore it is very important that clinicians are aware of their existence. We report here a case of RIA followed by discussion and review of literature

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    Quasi-Normal Modes of Stars and Black Holes

    Get PDF
    Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordstr\"om, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.Comment: 74 pages, 7 figures, Review article for "Living Reviews in Relativity

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M⊙1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M⊙1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Conceptual and Visual Features Contribute to Visual Memory for Natural Images

    Get PDF
    We examined the role of conceptual and visual similarity in a memory task for natural images. The important novelty of our approach was that visual similarity was determined using an algorithm [1] instead of being judged subjectively. This similarity index takes colours and spatial frequencies into account. For each target, four distractors were selected that were (1) conceptually and visually similar, (2) only conceptually similar, (3) only visually similar, or (4) neither conceptually nor visually similar to the target image. Participants viewed 219 images with the instruction to memorize them. Memory for a subset of these images was tested subsequently. In Experiment 1, participants performed a two-alternative forced choice recognition task and in Experiment 2, a yes/no-recognition task. In Experiment 3, testing occurred after a delay of one week. We analyzed the distribution of errors depending on distractor type. Performance was lowest when the distractor image was conceptually and visually similar to the target image, indicating that both factors matter in such a memory task. After delayed testing, these differences disappeared. Overall performance was high, indicating a large-capacity, detailed visual long-term memory
    • …
    corecore