43 research outputs found

    Honey bees repellent device: preliminary experimental research with the bees hearing sensitivity

    Get PDF
    Bees are insects that attack, to protect the hive, when they feel threatened. The main objective in this paper was to build an electronic device capable of repelling bees. Thus, a study of the hearing thresholds, of honey bees, has been developed to find out the frequencies range are most sensitive. This knowledge can be important to identify a frequency or a sound capable of repealing them. We also present an electronic circuit developed to build a repelling device able to reproduce a recorded sound or periodic sound. We report also a series of laboratory behaviour experiments, where honey bees (Apis mellifera spp.) had to make the choice between a box where a sound was being played or another box without sound. The experiments were conducted using the following sound frequencies: 100, 150, 200, 300, 400, 500 and 550 Hz; and also, with the sound of three natural predators: the drone, the swallow and the Asian wasp. The honey bees used in the experiments were previously conditioned to go to the box with sound that contained food in order to associate the sound to the presence of food.info:eu-repo/semantics/publishedVersio

    Adaptation or constraint? Reference-dependent scatter in honey bee dances

    Get PDF
    The waggle dance of the honey bee is used to recruit nest mates to a resource. Dancer bees, however, may indicate many directions within a single dance bout; we show that this scatter in honey bee dances is strongly dependent on the sensory modality used to determine a reference angle in the dance. Dances with a visual reference are more precise than those with a gravity reference. This finding undermines the idea that scatter is introduced into dances, which the bees could perform more precisely, in order to spread recruits out over resource patches. It also calls into question reported interspecific differences that had been interpreted as adaptations of the dance to different habitats. Our results support a non-adaptive hypothesis: that dance scatter results from sensory and performance constraints, rather than modulation of the scatter by the dancing bee. However, an alternative adaptive hypothesis cannot be ruled out

    How Do Honeybees Attract Nestmates Using Waggle Dances in Dark and Noisy Hives?

    Get PDF
    It is well known that honeybees share information related to food sources with nestmates using a dance language that is representative of symbolic communication among non-primates. Some honeybee species engage in visually apparent behavior, walking in a figure-eight pattern inside their dark hives. It has been suggested that sounds play an important role in this dance language, even though a variety of wing vibration sounds are produced by honeybee behaviors in hives. It has been shown that dances emit sounds primarily at about 250–300 Hz, which is in the same frequency range as honeybees' flight sounds. Thus the exact mechanism whereby honeybees attract nestmates using waggle dances in such a dark and noisy hive is as yet unclear. In this study, we used a flight simulator in which honeybees were attached to a torque meter in order to analyze the component of bees' orienting response caused only by sounds, and not by odor or by vibrations sensed by their legs. We showed using single sound localization that honeybees preferred sounds around 265 Hz. Furthermore, according to sound discrimination tests using sounds of the same frequency, honeybees preferred rhythmic sounds. Our results demonstrate that frequency and rhythmic components play a complementary role in localizing dance sounds. Dance sounds were presumably developed to share information in a dark and noisy environment

    Dynamic Range Compression in the Honey Bee Auditory System toward Waggle Dance Sounds

    Get PDF
    Honey bee foragers use a “waggle dance” to inform nestmates about direction and distance to locations of attractive food. The sound and air flows generated by dancer's wing and abdominal vibrations have been implicated as important cues, but the decoding mechanisms for these dance messages are poorly understood. To understand the neural mechanisms of honey bee dance communication, we analyzed the anatomy of antenna and Johnston's organ (JO) in the pedicel of the antenna, as well as the mechanical and neural response characteristics of antenna and JO to acoustic stimuli, respectively. The honey bee JO consists of about 300–320 scolopidia connected with about 48 cuticular “knobs” around the circumference of the pedicel. Each scolopidium contains bipolar sensory neurons with both type I and II cilia. The mechanical sensitivities of the antennal flagellum are specifically high in response to low but not high intensity stimuli of 265–350 Hz frequencies. The structural characteristics of antenna but not JO neurons seem to be responsible for the non-linear responses of the flagellum in contrast to mosquito and fruit fly. The honey bee flagellum is a sensitive movement detector responding to 20 nm tip displacement, which is comparable to female mosquito. Furthermore, the JO neurons have the ability to preserve both frequency and temporal information of acoustic stimuli including the “waggle dance” sound. Intriguingly, the response of JO neurons was found to be age-dependent, demonstrating that the dance communication is only possible between aged foragers. These results suggest that the matured honey bee antennae and JO neurons are best tuned to detect 250–300 Hz sound generated during “waggle dance” from the distance in a dark hive, and that sufficient responses of the JO neurons are obtained by reducing the mechanical sensitivity of the flagellum in a near-field of dancer. This nonlinear effect brings about dynamic range compression in the honey bee auditory system

    Characterization and Generation of Male Courtship Song in Cotesia congregata (Hymenoptera: Braconidae)

    Get PDF
    Background Male parasitic wasps attract females with a courtship song produced by rapid wing fanning. Songs have been described for several parasitic wasp species; however, beyond association with wing fanning, the mechanism of sound generation has not been examined. We characterized the male courtship song of Cotesia congregata (Hymenoptera: Braconidae) and investigated the biomechanics of sound production. Methods and Principal Findings Courtship songs were recorded using high-speed videography (2,000 fps) and audio recordings. The song consists of a long duration amplitude-modulated “buzz” followed by a series of pulsatile higher amplitude “boings,” each decaying into a terminal buzz followed by a short inter-boing pause while wings are stationary. Boings have higher amplitude and lower frequency than buzz components. The lower frequency of the boing sound is due to greater wing displacement. The power spectrum is a harmonic series dominated by wing repetition rate ~220 Hz, but the sound waveform indicates a higher frequency resonance ~5 kHz. Sound is not generated by the wings contacting each other, the substrate, or the abdomen. The abdomen is elevated during the first several wing cycles of the boing, but its position is unrelated to sound amplitude. Unlike most sounds generated by volume velocity, the boing is generated at the termination of the wing down stroke when displacement is maximal and wing velocity is zero. Calculation indicates a low Reynolds number of ~1000. Conclusions and Significance Acoustic pressure is proportional to velocity for typical sound sources. Our finding that the boing sound was generated at maximal wing displacement coincident with cessation of wing motion indicates that it is caused by acceleration of the wing tips, consistent with a dipole source. The low Reynolds number requires a high wing flap rate for flight and predisposes wings of small insects for sound production

    The early bee catches the flower - circadian rhythmicity influences learning performance in honey bees, Apis mellifera

    Get PDF
    Circadian rhythmicity plays an important role for many aspects of honey bees’ lives. However, the question whether it also affects learning and memory remained unanswered. To address this question, we studied the effect of circadian timing on olfactory learning and memory in honey bees Apis mellifera using the olfactory conditioning of the proboscis extension reflex paradigm. Bees were differentially conditioned to odours and tested for their odour learning at four different “Zeitgeber” time points. We show that learning behaviour is influenced by circadian timing. Honey bees perform best in the morning compared to the other times of day. Additionally, we found influences of the light condition bees were trained at on the olfactory learning. This circadian-mediated learning is independent from feeding times bees were entrained to, indicating an inherited and not acquired mechanism. We hypothesise that a co-evolutionary mechanism between the honey bee as a pollinator and plants might be the driving force for the evolution of the time-dependent learning abilities of bees

    The Formation of Collective Silk Balls in the Spider Mite Tetranychus urticae Koch

    Get PDF
    Tetranychus urticae is a phytophagous mite that forms colonies of several thousand individuals. These mites construct a common web to protect the colony. When plants become overcrowded and food resources become scarce, individuals gather at the plant apex to form a ball composed of mites and their silk threads. This ball is a structure facilitating group dispersal by wind or animal transport. Until now, no quantitative study had been done on this collective form of migration. This is the first attempt to understand the mechanisms that underlie the emergence and growth of the ball. We studied this collective behaviour under laboratory conditions on standardized infested plants. Our results show that the collective displacement and the formation of balls result from a recruitment process: by depositing silk threads on their way up to the plant apex, mites favour and amplify the recruitment toward the balls. A critical threshold (quorum response) in the cumulative flow of mites must be reached to observe the emergence of a ball. At the beginning of the balls formation, mites form an aggregate. After 24 hours, the aggregated mites are trapped inside the silk balls by the complex network of silk threads and finally die, except for recently arrived individuals. The balls are mainly composed of immature stages. Our study reconstructs the key events that lead to the formation of silk balls. They suggest that the interplay between mites' density, plant morphology and plant density lead to different modes of dispersions (individual or collective) and under what conditions populations might adopt a collective strategy rather than one that is individually oriented. Moreover, our results lead to discuss two aspects of the cooperation and altruism: the importance of Allee effects during colonization of new plants and the importance of the size of a founding group

    Transfer of Information during Honeybee Dances, Studied by Means of a Mechanical Model

    No full text
    corecore