35 research outputs found

    Prion protein interaction with soil humic substances: environmental implications

    Get PDF
    Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders caused by prions. Animal TSE include scrapie in sheep and goats, and chronic wasting disease (CWD) in cervids. Effective management of scrapie in many parts of the world, and of CWD in North American deer population is complicated by the persistence of prions in the environment. After shedding from diseased animals, prions persist in soil, withstanding biotic and abiotic degradation. As soil is a complex, multi-component system of both mineral and organic components, it is important to understand which soil compounds may interact with prions and thus contribute to disease transmission. Several studies have investigated the role of different soil minerals in prion adsorption and infectivity; we focused our attention on the interaction of soil organic components, the humic substances (HS), with recombinant prion protein (recPrP) material. We evaluated the kinetics of recPrP adsorption, providing a structural and biochemical characterization of chemical adducts using different experimental approaches. Here we show that HS act as potent anti-prion agents in prion infected neuronal cells and in the amyloid seeding assays: HS adsorb both recPrP and prions, thus sequestering them from the prion replication process. We interpreted our findings as highly relevant from an environmental point of view, as the adsorption of prions in HS may affect their availability and consequently hinder the environmental transmission of prion diseases in ruminants

    SAD phasing using iodide ions in a high-throughput structural genomics environment

    Get PDF
    The Seattle Structural Genomics Center for Infectious Disease (SSGCID) focuses on the structure elucidation of potential drug targets from class A, B, and C infectious disease organisms. Many SSGCID targets are selected because they have homologs in other organisms that are validated drug targets with known structures. Thus, many SSGCID targets are expected to be solved by molecular replacement (MR), and reflective of this, all proteins are expressed in native form. However, many community request targets do not have homologs with known structures and not all internally selected targets readily solve by MR, necessitating experimental phase determination. We have adopted the use of iodide ion soaks and single wavelength anomalous dispersion (SAD) experiments as our primary method for de novo phasing. This method uses existing native crystals and in house data collection, resulting in rapid, low cost structure determination. Iodide ions are non-toxic and soluble at molar concentrations, facilitating binding at numerous hydrophobic or positively charged sites. We have used this technique across a wide range of crystallization conditions with successful structure determination in 16 of 17 cases within the first year of use (94% success rate). Here we present a general overview of this method as well as several examples including SAD phasing of proteins with novel folds and the combined use of SAD and MR for targets with weak MR solutions. These cases highlight the straightforward and powerful method of iodide ion SAD phasing in a high-throughput structural genomics environment

    Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences

    Get PDF
    BACKGROUND: Phylogenetic methods which do not rely on multiple sequence alignments are important tools in inferring trees directly from completely sequenced genomes. Here, we extend the recently described Genome BLAST Distance Phylogeny (GBDP) strategy to compute phylogenetic trees from all completely sequenced plastid genomes currently available and from a selection of mitochondrial genomes representing the major eukaryotic lineages. BLASTN, TBLASTX, or combinations of both are used to locate high-scoring segment pairs (HSPs) between two sequences from which pairwise similarities and distances are computed in different ways resulting in a total of 96 GBDP variants. The suitability of these distance formulae for phylogeny reconstruction is directly estimated by computing a recently described measure of "treelikeness", the so-called δ value, from the respective distance matrices. Additionally, we compare the trees inferred from these matrices using UPGMA, NJ, BIONJ, FastME, or STC, respectively, with the NCBI taxonomy tree of the taxa under study. RESULTS: Our results indicate that, at this taxonomic level, plastid genomes are much more valuable for inferring phylogenies than are mitochondrial genomes, and that distances based on breakpoints are of little use. Distances based on the proportion of "matched" HSP length to average genome length were best for tree estimation. Additionally we found that using TBLASTX instead of BLASTN and, particularly, combining TBLASTX and BLASTN leads to a small but significant increase in accuracy. Other factors do not significantly affect the phylogenetic outcome. The BIONJ algorithm results in phylogenies most in accordance with the current NCBI taxonomy, with NJ and FastME performing insignificantly worse, and STC performing as well if applied to high quality distance matrices. δ values are found to be a reliable predictor of phylogenetic accuracy. CONCLUSION: Using the most treelike distance matrices, as judged by their δ values, distance methods are able to recover all major plant lineages, and are more in accordance with Apicomplexa organelles being derived from "green" plastids than from plastids of the "red" type. GBDP-like methods can be used to reliably infer phylogenies from different kinds of genomic data. A framework is established to further develop and improve such methods. δ values are a topology-independent tool of general use for the development and assessment of distance methods for phylogenetic inference

    Cloning and expression of the essential gene for poly(A) polymerase from S. cerevisiae

    No full text
    Poly(A) polymerase is essential for the maturation of messenger RNA, adding tracts of adenosine residues to the 3' end of precursor RNA generated by endonucleolytic cleavage. This mechanism of mRNA 3' processing seems to be similar in yeast and in higher eucaryotes, although there are differences in the recognition signals in the pre-mRNA. Here we describe the cloning of the gene for yeast poly(A) polymerase. The enzyme is encoded by a single and essential gene located near the centromere on the left arm of chromosome 11. Poly(A) polymerase purified from recombinant Escherichia coli has the same physical and biochemical properties as the yeast enzyme. The yeast poly(A) polymerase shares features of sequence with its mammalian homologue

    Ex Vivo and In Vivo Inhibition of Human Rhinovirus Replication by a New Pseudosubstrate of Viral 2A Protease

    No full text
    Human rhinoviruses (HRVs) remain a significant public health problem as they are the major cause of both upper and lower respiratory tract infections. Unfortunately, to date no vaccine or antiviral against these pathogens is available. Here, using a high-throughput yeast two-hybrid screening, we identified a 6-amino-acid hit peptide, LVLQTM, which acted as a pseudosubstrate of the viral 2A cysteine protease (2Apro) and inhibited its activity. This peptide was chemically modified with a reactive electrophilic fluoromethylketone group to form a covalent linkage with the nucleophilic active-site thiol of the enzyme. Ex vivo and in vivo experiments showed that thus converted, LVLQTM was a strong inhibitor of HRV replication in both A549 cells and mice. To our knowledge, this is the first report validating a compound against HRV infection in a mouse model

    Synthesis of genomic and subgenomic RNAs by a membrane-bound RNA-dependent RNA polymerase isolated from oat plants infected with cereal yellow dwarf virus

    No full text
    A membrane-bound RNA-dependent RNA polymerase (RdRp) complex was isolated by differential sedimentation from oat plants infected with cereal yellow dwarf virus (CYDV). When incubated with P-32-labelled UTP, unlabelled ATP, CTP and GTP, and Mg2+ ions, the RdRp preparation catalysed the synthesis of double-stranded (ds) RNAs corresponding in size to the virus genomic RNA (5.7 kbp) and two putative subgenomic RNAs (2.8 and 0.7 kbp). Hybridisation using strand-specific hybridization targets showed that the 5.7-kbp dsRNA was labelled mainly in the plus strand, whereas the 2.8- and 0.7-kbp dsRNAs were labelled only in the minus strand. Genomic-length single-stranded, plus-strand RNA of 5.7 kb and single-stranded, plus-strand subgenomic RNAs of 2.8 and 0.7 kbp were detected in RNA isolated from oat plants infected with CYDV. Mapping experiments were consistent with the genomic and subgenomic RNAs having common 3' ends, but different 5' ends, whether produced in vitro or in vivo. The RdRp-encoding region of the CYDV genome was cloned and expressed in Escherichia coli, and the purified protein was used to raise antibodies in a rabbit. In immunoblots, the antibodies detected a protein of about 68 kDa in RdRp preparations from CYDV-infected oat plants, but not from equivalent preparations from healthy oats. As far as we are aware, this is the first report of an in vitro RNA synthesis system for a phloem-limited virus.Peer reviewe
    corecore