67 research outputs found
All Is Not Loss: Plant Biodiversity in the Anthropocene
Anthropogenic global changes in biodiversity are generally portrayed in terms of massive native species losses or invasions caused by recent human disturbance. Yet these biodiversity changes and others caused directly by human populations and their use of land tend to co-occur as long-term biodiversity change processes in the Anthropocene. Here we explore contemporary anthropogenic global patterns in vascular plant species richness at regional landscape scales by combining spatially explicit models and estimates for native species loss together with gains in exotics caused by species invasions and the introduction of agricultural domesticates and ornamental exotic plants. The patterns thus derived confirm that while native losses are likely significant across at least half of Earth's ice-free land, model predictions indicate that plant species richness has increased overall in most regional landscapes, mostly because species invasions tend to exceed native losses. While global observing systems and models that integrate anthropogenic species loss, introduction and invasion at regional landscape scales remain at an early stage of development, integrating predictions from existing models within a single assessment confirms their vast global extent and significance while revealing novel patterns and their potential drivers. Effective global stewardship of plant biodiversity in the Anthropocene will require integrated frameworks for observing, modeling and forecasting the different forms of anthropogenic biodiversity change processes at regional landscape scales, towards conserving biodiversity within the novel plant communities created and sustained by human systems
Distribution patterns of riodinid butterflies (Lepidoptera: Riodinidae) from southern Brazil
Background: The aim of this study was to synthesize the knowledge of Riodinidae butterflies (Lepidoptera: Papilionoidea) in Rio Grande do Sul state (RS), southern Brazil, evaluating the role of climatic, topographic, and vegetational variables on the observed patterns of occurrence and distribution of these butterflies in the Pampa and Atlantic Forest biomes. The records of riodinid butterflies in RS were collected from published studies and the examination of museum collections in Brazil. Results: A total of 97 taxa of Riodinidae were recorded, distributed in 92 municipalities. The NMDS analysis and the Constrained Analysis of Principal Coordinates grouped the municipalities according to the phytogeographic regions and biomes - Pampa and Atlantic Forest domains - in which the species records were made. Distance from the ocean, precipitation and temperature were the environmental variables which most contributed to explain the distribution patterns of these butterflies. The multivariate Mantel correlogram suggests that over short distances, the composition of species shows significant levels of spatial autocorrelation, and as geographic distance increases, these levels tend to present negative values. Conclusions: The results suggest that the observed distribution pattern of Riodinidae in the different biomes and phytogeographic regions in the extreme southern Brazil could be explained by climatic, environmental variables and geographic distance
- …