78 research outputs found

    An early Cambrian agglutinated tubular lophophorate with brachiopod characters.

    Get PDF
    The morphological disparity of lophotrochozoan phyla makes it difficult to predict the morphology of the last common ancestor. Only fossils of stem groups can help discover the morphological transitions that occurred along the roots of these phyla. Here, we describe a tubular fossil Yuganotheca elegans gen. et sp. nov. from the Cambrian (Stage 3) Chengjiang Lagerstätte (Yunnan, China) that exhibits an unusual combination of phoronid, brachiopod and tommotiid (Cambrian problematica) characters, notably a pair of agglutinated valves, enclosing a horseshoe-shaped lophophore, supported by a lower bipartite tubular attachment structure with a long pedicle with coelomic space. The terminal bulb of the pedicle provided anchorage in soft sediment. The discovery has important implications for the early evolution of lophotrochozoans, suggesting rooting of brachiopods into the sessile lophotrochozoans and the origination of their bivalved bauplan preceding the biomineralization of shell valves in crown brachiopods

    Detection of circulating tumor cells in breast cancer may improve through enrichment with anti-CD146

    Full text link
    Most assays to detect circulating tumor cells (CTCs) rely on EpCAM expression on tumor cells. Recently, our group reported that in contrast to other molecular breast cancer subtypes, "normal-like" cell lines lack EpCAM expression and are thus missed when CTCs are captured with EpCAM-based technology [J Natl Cancer Inst 101(1):61-66, 2009]. Here, the use of CD146 is introduced to detect EpCAM-negative CTCs, thereby improving CTC detection. CD146 and EpCAM expression were assessed in our panel of 41 breast cancer cell lines. Cells from 14 cell lines, 9 of which normal-like, were spiked into healthy donor blood. Using CellSearch (TM) technology, 7.5 ml whole blood was enriched for CTCs by adding ferrofluids loaded with antibodies against EpCAM and/or CD146 followed by staining for Cytokeratin and DAPI. Hematopoietic cells and circulating endothelial cells (CECs) were counterstained with CD45 and CD34, respectively. A similar approach was applied for blood samples of 20 advanced breast cancer patients. Eight of 9 normal-like breast cancer cell lines lacked EpCAM expression but did express CD146. Five of these 8 could be adequately recovered by anti-CD146 ferrofluids. Of 20 advanced breast cancer patients whose CTCs were enumerated with anti-EpCAM and anti-CD146 ferrofluids, 9 had CD146+ CTCs. Cells from breast cancer cell lines that lack EpCAM expression frequently express CD146 and can be recovered by anti-CD146 ferrofluids. CD146+ CTCs are present in the peripheral blood of breast cancer patients with advanced disease. Combined use of anti-CD146 and anti-EpCAM is likely to improve CTC detection in breast cancer patients

    The two phases of the Cambrian Explosion

    Get PDF
    Abstract The dynamics of how metazoan phyla appeared and evolved – known as the Cambrian Explosion – remains elusive. We present a quantitative analysis of the temporal distribution (based on occurrence data of fossil species sampled in each time interval) of lophotrochozoan skeletal species (n = 430) from the terminal Ediacaran to Cambrian Stage 5 (~545 – ~505 Million years ago (Ma)) of the Siberian Platform, Russia. We use morphological traits to distinguish between stem and crown groups. Possible skeletal stem group lophophorates, brachiopods, and molluscs (n = 354) appear in the terminal Ediacaran (~542 Ma) and diversify during the early Cambrian Terreneuvian and again in Stage 2, but were devastated during the early Cambrian Stage 4 Sinsk extinction event (~513 Ma) never to recover previous diversity. Inferred crown group brachiopod and mollusc species (n = 76) do not appear until the Fortunian, ~537 Ma, radiate in the early Cambrian Stage 3 (~522 Ma), and with minimal loss of diversity at the Sinsk Event, continued to diversify into the Ordovician. The Sinsk Event also removed other probable stem groups, such as archaeocyath sponges. Notably, this diversification starts before, and extends across the Ediacaran/Cambrian boundary and the Basal Cambrian Carbon Isotope Excursion (BACE) interval (~541 to ~540 Ma), ascribed to a possible global perturbation of the carbon cycle. We therefore propose two phases of the Cambrian Explosion separated by the Sinsk extinction event, the first dominated by stem groups of phyla from the late Ediacaran, ~542 Ma, to early Cambrian stage 4, ~513 Ma, and the second marked by radiating bilaterian crown group species of phyla from ~513 Ma and extending to the Ordovician Radiation

    Factors influencing Deep Ice Temperatures

    No full text

    Modeling water mass formation in the Mertz Glacier Polynya and Ade´lie Depression, East Antarctica

    No full text
    High rates of sea ice growth and brine rejection in the Mertz Glacier Polynya drive the production of dense continental shelf waters in the Ade´lie Depression. We consider the rate of outflow of waters having sufficient density to sink into the neighboring abyssal ocean and form Ade´lie Land Bottom Water (ALBW). Along with Weddell and Ross Sea Bottom Waters, the ALBW is an important source of Antarctic Bottom Water. The relevant processes are modeled using a variant of the Max Planck Institute Ocean Model (MPIOM) under daily NCEP-NCAR reanalysis forcing for the period 1991–2000. The orthogonal curvilinear horizontal grid allows for the construction of a global domainwith high resolution in our region of interest. The modeled Mertz Glacier Polynya is realistic in location and extent, exhibiting low ice thickness (<0.4 m) and low ice fraction (<50%). The net surface ocean to atmosphere heat flux exceeds 200 W m2 and is dominated by sensible heat exchange. In wintertime (May through September inclusive), 7.5mof sea ice forms over the Ade´lie Depression at a rate of 4.9 cm d1: this results in annual average volumetric production of 99 km3 of sea ice. The associated brine release drives dense shelf water formation. The off-shelf flow of dense water exhibits strong interannual variability in response to variability in both atmospheric forcing and ocean preconditioning. Averaged over the period 1991–2000 the off shelf flow of dense water is 0.15 Sv: for a period of strong outflow (1993–1997), this increases to 0.24 Sv. Most of the outflow occurs during July through October, at a rate of 0.40 (0.63) Sv over the period 1991–2000 (1993–1997). The peak mean monthly outflow can exceed 1 Sv

    Reinterpretation of Deep Ice Temperatures

    No full text

    A model of the Antarctic Ice Sheet

    No full text
    Numerical modelling of ice sheets and glaciers has become a useful tool in glaciological research. A model described here deals with the vertical mean ice velocity, is time dependent, computes bedrock adjustment and uses an empirical diagnostic relationship to derive the distribution of ice thickness in ice shelves. The rate of snowfall and ice/snow melt depends on the (prescribed) sea-level temperature, surface slope, elevation and distance to open water. The model is able to reproduce the major. features of the Antarctic Ice Sheet. When it is run to a steady state for present climatic conditions, the main difference with the present ice sheet is that the shallow parts of the Weddell Sea become covered by grounded ice
    • …
    corecore