1,113 research outputs found
Instrumentation for hydrogen slush storage containers
Hydrogen liquid and slush tank continuous inventory during ground storag
The PANDA GEM-based TPC Prototype
We report on the development of a GEM-based TPC prototype for the PANDA
experiment. The design and requirements of this device will be illustrated,
with particular emphasis on the properties of the recently tested GEM-detector,
the characterization of the read-out electronics and the development of the
tracking software that allows to evaluate the GEM-TPC data.Comment: submitted to NIMA 4 pages, 6 picture
Specific heat amplitude ratios for anisotropic Lifshitz critical behaviors
We determine the specific heat amplitude ratio near a -axial Lifshitz
point and show its universal character. Using a recent renormalization group
picture along with new field-theoretical -expansion techniques,
we established this amplitude ratio at one-loop order. We estimate the
numerical value of this amplitude ratio for and . The result is in
very good agreement with its experimental measurement on the magnetic material
. It is shown that in the limit it trivially reduces to the
Ising-like amplitude ratio.Comment: 8 pages, RevTex, accepted as a Brief Report in Physical Review
A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations
Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, âfHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ molâ1, respectively. The âfHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be â94.0 ± 3.2, â446.6 ± 2.7, â702.1 ± 3.5, â487.8 ± 3.4 and â285.2 ± 3.2 kJ molâ1, respectively
FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array
The FlashCam group is currently preparing photomultiplier-tube based cameras
proposed for the medium-sized telescopes (MST) of the Cherenkov Telescope Array
(CTA). The cameras are designed around the FlashCam readout concept which is
the first fully-digital readout system for Cherenkov cameras, based on
commercial FADCs and FPGAs as key components for the front-end electronics
modules and a high performance camera server as back-end. This contribution
describes the progress of the full-scale FlashCam camera prototype currently
under construction, as well as performance results also obtained with earlier
demonstrator setups. Plans towards the production and implementation of
FlashCams on site are also briefly presented.Comment: 8 pages, 6 figures. In Proceedings of the 34th International Cosmic
Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions
at arXiv:1508.0589
FACT - Threshold prediction for higher duty cycle and improved scheduling
The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise
a higher photon detection efficiency, more robustness and higher precision than
photo-multiplier tubes. Being operated during different light-conditions, the
threshold settings of a Cherenkov telescope have to be adapted to feature the
lowest possible threshold but also an efficient suppression of triggers from
night-sky background photons. Usually this threshold is set either by
experience or a mini-ratescan. Since the measured current through the sensors
is directly correlated with the noise level, the current can be used to set the
best threshold at any time. Due to the correlation between the physical
threshold and the final energy threshold, the current can also be used as a
measure for the energy threshold of any observation. This presentation
introduces a method which uses the properties of the moon and the source
position to predict the currents and the corresponding energy threshold for
every upcoming observation allowing to adapt the observation schedule
accordingly
FACT - Long-term Monitoring of Bright TeV-Blazars
Since October 2011, the First G-APD Cherenkov Telescope (FACT) is operated
successfully on the Canary Island of La Palma. Apart from the proof of
principle for the use of G-APDs in Cherenkov telescopes, the major goal of the
project is the dedicated long-term monitoring of a small sample of bright TeV
blazars. The unique properties of G-APDs permit stable observations also during
strong moon light. Thus a superior sampling density is provided on time scales
at which the blazar variability amplitudes are expected to be largest, as
exemplified by the spectacular variations of Mrk 501 observed in June 2012.
While still in commissioning, FACT monitored bright blazars like Mrk 421 and
Mrk 501 during the past 1.5 years so far. Preliminary results including the Mrk
501 flare from June 2012 will be presented.Comment: 4 pages, 4 figures, presented at the 33rd ICRC (2013
FACT - How stable are the silicon photon detectors?
The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise
a higher photon detection efficiency, more robustness and higher precision than
photo-multiplier tubes. Since the properties of G-APDs depend on auxiliary
parameters like temperature, a feedback system adapting the applied voltage
accordingly is mandatory.
In this presentation, the feedback system, developed and in operation for
FACT, is presented. Using the extraction of a single photon-equivalent (pe)
spectrum as a reference, it can be proven that the sensors can be operated with
very high precision. The extraction of the single-pe, its spectrum up to
10\,pe, its properties and their precision, as well as their long-term behavior
during operation are discussed. As a by product a single pulse template is
obtained. It is shown that with the presented method, an additional external
calibration device can be omitted. The presented method is essential for the
application of G-APDs in future projects in Cherenkov astronomy and is supposed
to result in a more stable and precise operation than possible with
photo-multiplier tubes
FACT - Long-term stability and observations during strong Moon light
The First G-APD Cherenkov Telescope (FACT) is the first Cherenkov telescope
equipped with a camera made of silicon photon detectors (G-APD aka. SiPM).
Since October 2011, it is regularly taking data on the Canary Island of La
Palma. G-APDs are ideal detectors for Cherenkov telescopes as they are robust
and stable. Furthermore, the insensitivity of G-APDs towards strong ambient
light allows to conduct observations during bright Moon and twilight. This gain
in observation time is essential for the long-term monitoring of bright TeV
blazars. During the commissioning phase, hundreds of hours of data (including
data from the the Crab Nebula) were taken in order to understand the
performance and sensitivity of the instrument. The data cover a wide range of
observation conditions including different weather conditions, different zenith
angles and different light conditions (ranging from dark night to direct full
Moon). We use a new parmetrisation of the Moon light background to enhance our
scheduling and to monitor the atmosphere. With the data from 1.5 years, the
long-term stability and the performance of the camera during Moon light is
studied and compared to that achieved with photomultiplier tubes so far.Comment: 3 pages, 3 figures, FACT Contribution to the 33rd International
Cosmic Ray Conference (ICRC), Rio de Janeir
Calibration and performance of the photon sensor response of FACT -- The First G-APD Cherenkov telescope
The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of
the performance of silicon photo detectors in Cherenkov Astronomy. For more
than two years it is operated on La Palma, Canary Islands (Spain), for the
purpose of long-term monitoring of astrophysical sources. For this, the
performance of the photo detectors is crucial and therefore has been studied in
great detail. Special care has been taken for their temperature and voltage
dependence implementing a correction method to keep their properties stable.
Several measurements have been carried out to monitor the performance. The
measurements and their results are shown, demonstrating the stability of the
gain below the percent level. The resulting stability of the whole system is
discussed, nicely demonstrating that silicon photo detectors are perfectly
suited for the usage in Cherenkov telescopes, especially for long-term
monitoring purpose
- âŠ