The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise
a higher photon detection efficiency, more robustness and higher precision than
photo-multiplier tubes. Being operated during different light-conditions, the
threshold settings of a Cherenkov telescope have to be adapted to feature the
lowest possible threshold but also an efficient suppression of triggers from
night-sky background photons. Usually this threshold is set either by
experience or a mini-ratescan. Since the measured current through the sensors
is directly correlated with the noise level, the current can be used to set the
best threshold at any time. Due to the correlation between the physical
threshold and the final energy threshold, the current can also be used as a
measure for the energy threshold of any observation. This presentation
introduces a method which uses the properties of the moon and the source
position to predict the currents and the corresponding energy threshold for
every upcoming observation allowing to adapt the observation schedule
accordingly