328 research outputs found
Ultra-High Energy Cosmic Rays from Neutrino Emitting Acceleration Sources?
We demonstrate by numerical flux calculations that neutrino beams producing
the observed highest energy cosmic rays by weak interactions with the relic
neutrino background require a non-uniform distribution of sources. Such sources
have to accelerate protons at least up to 10^{23} eV, have to be opaque to
their primary protons, and should emit the secondary photons unavoidably
produced together with the neutrinos only in the sub-MeV region to avoid
conflict with the diffuse gamma-ray background measured by the EGRET
experiment. Even if such a source class exists, the resulting large
uncertainties in the parameters involved in this scenario does currently not
allow to extract any meaningful information on absolute neutrino masses.Comment: 6 pages, 4 figures, RevTeX styl
Which blazars are neutrino loud?
Protons accelerated in the cores of active galactic nuclei can effectively
produce neutrinos only if the soft radiation background in the core is
sufficiently high. We find restrictions on the spectral properties and
luminosity of blazars under which they can be strong neutrino sources. We
analyze the possibility that neutrino flux is highly beamed along the rotation
axis of the central black hole. The enhancement of neutrino flux compared to
GeV gamma-ray flux from a given source makes the detection of neutrino point
sources more probable. At the same time the smaller open angle reduces the
number of possible neutrino-loud blazars compared to the number of gamma-ray
loud ones. We present the table of 15 blazars which are the most likely
candidates for the detection by future neutrino telescopes.Comment: 9 pages, 5 figures, version to be published in PR
Constraints on ultra-high energy neutrinos from optically thick astrophysical accelerators
The Z-burst mechanism invoked to explain ultra-high energy cosmic rays is
severely constrained by measurements of the cosmic gamma-ray background by
EGRET. We discuss the case of optically thick sources and show that jets and
hot spots of active galaxies cannot provide the optical depth required to
suppress the photon flux. Other extragalactic accelerators (AGN cores and sites
of gamma ray bursts), if they are optically thick, could be tested by future
measurements of the secondary neutrino flux.Comment: 9 pages, 1 figure; v2: 10 pages, references added; experimental data
on neutrino fluxes updated significantly; to be published in Astropart.Phy
Ultra-High Energy Neutrino Fluxes and Their Constraints
Applying our recently developed propagation code we review extragalactic
neutrino fluxes above 10^{14} eV in various scenarios and how they are
constrained by current data. We specifically identify scenarios in which the
cosmogenic neutrino flux, produced by pion production of ultra high energy
cosmic rays outside their sources, is considerably higher than the
"Waxman-Bahcall bound". This is easy to achieve for sources with hard injection
spectra and luminosities that were higher in the past. Such fluxes would
significantly increase the chances to detect ultra-high energy neutrinos with
experiments currently under construction or in the proposal stage.Comment: 11 pages, 15 figures, version published in Phys.Rev.
New hadrons as ultra-high energy cosmic rays
Ultra-high energy cosmic ray (UHECR) protons produced by uniformly
distributed astrophysical sources contradict the energy spectrum measured by
both the AGASA and HiRes experiments, assuming the small scale clustering of
UHECR observed by AGASA is caused by point-like sources. In that case, the
small number of sources leads to a sharp exponential cutoff at the energy
E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve
this cutoff problem. For the first time we discuss the production of such
hadrons in proton collisions with infrared/optical photons in astrophysical
sources. This production mechanism, in contrast to proton-proton collisions,
requires the acceleration of protons only to energies E<10^{21} eV. The diffuse
gamma-ray and neutrino fluxes in this model obey all existing experimental
limits. We predict large UHE neutrino fluxes well above the sensitivity of the
next generation of high-energy neutrino experiments. As an example we study
hadrons containing a light bottom squark. These models can be tested by
accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR
Nearby quasar remnants and ultra-high energy cosmic rays
As recently suggested, nearby quasar remnants are plausible sites of
black-hole based compact dynamos that could be capable of accelerating
ultra-high energy cosmic rays (UHECRs). In such a model, UHECRs would originate
at the nuclei of nearby dead quasars, those in which the putative underlying
supermassive black holes are suitably spun-up. Based on galactic optical
luminosity, morphological type, and redshift, we have compiled a small sample
of nearby objects selected to be highly luminous, bulge-dominated galaxies,
likely quasar remnants. The sky coordinates of these galaxies were then
correlated with the arrival directions of cosmic rays detected at energies EeV. An apparently significant correlation appears in our data. This
correlation appears at closer angular scales than those expected when taking
into account the deflection caused by typically assumed IGM or galactic
magnetic fields over a charged particle trajectory. Possible scenarios
producing this effect are discussed, as is the astrophysics of the quasar
remnant candidates. We suggest that quasar remnants be also taken into account
in the forthcoming detailed search for correlations using data from the Auger
Observatory.Comment: 2 figures, 4 tables, 11 pages. Final version to appear in Physical
Review
Tracing protons through the Galactic magnetic field: a clue for charge composition of ultra-high energy cosmic rays
We reconstruct the trajectories of ultra-high energy cosmic rays (UHECR) -
observed by the AGASA experiment - in the Galactic magnetic field assuming that
all particles have the same charge. We then study correlations between the
reconstructed events and BL Lacs. The correlations have significance below
10^{-3} in the case of particles with charge +1. In the case of charge -1 the
correlations are absent. We interpret this as evidence that protons are present
in the flux of UHECR. Observed correlation provides an independent evidence
that BL Lacs emit UHECR.Comment: 6 pages, 3 figures, LaTe
Relic neutrino masses and the highest energy cosmic rays
We consider the possibility that a large fraction of the ultrahigh energy
cosmic rays are decay products of Z bosons which were produced in the
scattering of ultrahigh energy cosmic neutrinos on cosmological relic
neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with
the one predicted in the above Z-burst scenario and determine the required mass
of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic
neutrino flux via a maximum likelihood analysis. We show that the value of the
neutrino mass obtained in this way is fairly robust against variations in
presently unknown quantities, like the amount of neutrino clustering, the
universal radio background, and the extragalactic magnetic field, within their
anticipated uncertainties. Much stronger systematics arises from different
possible assumptions about the diffuse background of ordinary cosmic rays from
unresolved astrophysical sources. In the most plausible case that these
ordinary cosmic rays are protons of extragalactic origin, one is lead to a
required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence
level. This range narrows down considerably if a particular universal radio
background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required
flux of ultrahigh energy cosmic neutrinos near the resonant energy should be
detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory,
otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX
Supernova Interaction with a Circumstellar Medium
The explosion of a core collapse supernova drives a powerful shock front into
the wind from the progenitor star. A layer of shocked circumstellar gas and
ejecta develops that is subject to hydrodynamic instabilities. The hot gas can
be observed directly by its X-ray emission, some of which is absorbed and
re-radiated at lower frequencies by the ejecta and the circumstellar gas.
Synchrotron radiation from relativistic electrons accelerated at the shock
fronts provides information on the mass loss density if free-free absorption
dominates at early times or the size of the emitting region if synchrotron
self-absorption dominates. Analysis of the interaction leads to information on
the density and structure of the ejecta and the circumstellar medium, and the
abundances in these media. The emphasis here is on the physical processes
related to the interaction.Comment: 22 pages, 7 figures, to appear as a Chapter in "Supernovae and
Gamma-Ray Bursts," edited by K. W. Weiler (Springer-Verlag
Loop Quantum Gravity and Ultra High Energy Cosmic Rays
There are two main sets of data for the observed spectrum of ultra high
energy cosmic rays (those cosmic rays with energies greater than eV), the High Resolution Fly's Eye (HiRes) collaboration group
observations, which seem to be consistent with the predicted theoretical
spectrum (and therefore with the theoretical limit known as the
Greisen-Zatsepin-Kuzmin cutoff), and the observations from the Akeno Giant Air
Shower Array (AGASA) collaboration group, which reveal an abundant flux of
incoming particles with energies above eV violating the
Greisen-Zatsepin-Kuzmin cutoff. As an explanation of this anomaly it has been
suggested that quantum-gravitational effects may be playing a decisive role in
the propagation of ultra high energy cosmic rays. In this article we take the
loop quantum gravity approach. We shall provide some techniques to establish
and analyze new constraints on the loop quantum gravity parameters arising from
both sets of data, HiRes and AGASA . We shall also study their effects on the
predicted spectrum for ultra high energy cosmic rays. As a result we will state
the possibility of reconciling the AGASA observations.Comment: 18 pages, latex, 4 figure
- …