The explosion of a core collapse supernova drives a powerful shock front into
the wind from the progenitor star. A layer of shocked circumstellar gas and
ejecta develops that is subject to hydrodynamic instabilities. The hot gas can
be observed directly by its X-ray emission, some of which is absorbed and
re-radiated at lower frequencies by the ejecta and the circumstellar gas.
Synchrotron radiation from relativistic electrons accelerated at the shock
fronts provides information on the mass loss density if free-free absorption
dominates at early times or the size of the emitting region if synchrotron
self-absorption dominates. Analysis of the interaction leads to information on
the density and structure of the ejecta and the circumstellar medium, and the
abundances in these media. The emphasis here is on the physical processes
related to the interaction.Comment: 22 pages, 7 figures, to appear as a Chapter in "Supernovae and
Gamma-Ray Bursts," edited by K. W. Weiler (Springer-Verlag