731 research outputs found

    Sympatric Occurrence Of Two Species Of Pseudopaludicola (anura: Leptodactylidae) And First Record Of Pseudopaludicola Jaredi Andrade, Magalhães, Nunes-de-almeida, Veiga-menoncello, Santana, Garda, Loebmann, Recco-pimentel, Giaretta & Toledo, 2016 In The State Of Maranhão, Northeastern Brazil

    Get PDF
    Here, we document the sympatric occurrence of Pseudopaludicola canga and P. jaredi. We also provide the first record of P. jaredi in the state of Maranhão, northeastern Brazil, expanding this species’ distribution by about 610 km southwestward from Serra das Flores, municipality of Viçosa do Ceará, state of Ceará. Furthermore, we fill the gap in the geographic distribution range of P. canga in the state of Maranhão, extending the distribution of this species by about 530 km southwestward from the municipality of Barreirinhas. © 2016 Check List and Authors.126001/2013FAPEMA, FAPEMA, Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do MaranhãoBD-01163/13, FAPEMA, Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhã

    Exact Calculation of the Vortex-Antivortex Interaction Energy in the Anisotropic 3D XY-model

    Full text link
    We have developed an exact method to calculate the vortex-antivortex interaction energy in the anisotropic 3D-XY model. For this calculation, dual transformation which is already known for the 2D XY-model was extended. We found an explicit form of this interaction energy as a function of the anisotropic ratio and the separation rr between the vortex and antivortex located on the same layer. The form of interaction energy is lnr\ln r at the small rr limi t but is proportional to rr at the opposite limit. This form of interaction energ y is consistent with the upper bound calculation using the variational method by Cataudella and Minnhagen.Comment: REVTeX 12 pages, In print for publication in Phys. Rev.

    Theory of proximity effect in superconductor/ferromagnet heterostructures

    Full text link
    We present a microscopic theory of proximity effect in the ferromagnet/superconductor/ferromagnet (F/S/F) nanostructures where S is s-wave low-T_c superconductor and F's are layers of 3d transition ferromagnetic metal. Our approach is based on the solution of Gor'kov equations for the normal and anomalous Green's functions together with a self-consistent evaluation of the superconducting order parameter. We take into account the elastic spin-conserving scattering of the electrons assuming s-wave scattering in the S layer and s-d scattering in the F layers. In accordance with the previous quasiclassical theories, we found that due to exchange field in the ferromagnet the anomalous Green's function F(z) exhibits the damping oscillations in the F-layer as a function of distance z from the S/F interface. In the given model a half of period of oscillations is determined by the length \xi_m^0 = \pi v_F/E_ex, where v_F is the Fermi velocity and E_ex is the exchange field, while damping is governed by the length l_0 = (1/l_{\uparrow} + 1/l_{\downarrow})^{-1} with l_{\uparrow} and l_{\downarrow} being spin-dependent mean free paths in the ferromagnet. The superconducting transition temperature T_c(d_F) of the F/S/F trilayer shows the damping oscillations as a function of the F-layer thickness d_F with period \xi_F = \pi/\sqrt{m E_ex}, where m is the effective electron mass. We show that strong spin-conserving scattering either in the superconductor or in the ferromagnet significantly suppresses these oscillations. The calculated T_c(d_F) dependences are compared with existing experimental data for Fe/Nb/Fe trilayers and Nb/Co multilayers.Comment: 13 pages, REVTeX4, 8 PS-figures; improved version, submitted to PR

    The 3-Band Hubbard-Model versus the 1-Band Model for the high-Tc Cuprates: Pairing Dynamics, Superconductivity and the Ground-State Phase Diagram

    Full text link
    One central challenge in high-TcT_c superconductivity (SC) is to derive a detailed understanding for the specific role of the CuCu-dx2y2d_{x^2-y^2} and OO-px,yp_{x,y} orbital degrees of freedom. In most theoretical studies an effective one-band Hubbard (1BH) or t-J model has been used. Here, the physics is that of doping into a Mott-insulator, whereas the actual high-TcT_c cuprates are doped charge-transfer insulators. To shed light on the related question, where the material-dependent physics enters, we compare the competing magnetic and superconducting phases in the ground state, the single- and two-particle excitations and, in particular, the pairing interaction and its dynamics in the three-band Hubbard (3BH) and 1BH-models. Using a cluster embedding scheme, i.e. the variational cluster approach (VCA), we find which frequencies are relevant for pairing in the two models as a function of interaction strength and doping: in the 3BH-models the interaction in the low- to optimal-doping regime is dominated by retarded pairing due to low-energy spin fluctuations with surprisingly little influence of inter-band (p-d charge) fluctuations. On the other hand, in the 1BH-model, in addition a part comes from "high-energy" excited states (Hubbard band), which may be identified with a non-retarded contribution. We find these differences between a charge-transfer and a Mott insulator to be renormalized away for the ground-state phase diagram of the 3BH- and 1BH-models, which are in close overall agreement, i.e. are "universal". On the other hand, we expect the differences - and thus, the material dependence to show up in the "non-universal" finite-T phase diagram (TcT_c-values).Comment: 17 pages, 9 figure

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table

    Search for Doubly-Charged Higgs Boson Production at HERA

    Get PDF
    A search for the single production of doubly-charged Higgs bosons H^{\pm \pm} in ep collisions is presented. The signal is searched for via the Higgs decays into a high mass pair of same charge leptons, one of them being an electron. The analysis uses up to 118 pb^{-1} of ep data collected by the H1 experiment at HERA. No evidence for doubly-charged Higgs production is observed and mass dependent upper limits are derived on the Yukawa couplings h_{el} of the Higgs boson to an electron-lepton pair. Assuming that the doubly-charged Higgs only decays into an electron and a muon via a coupling of electromagnetic strength h_{e \mu} = \sqrt{4 \pi \alpha_{em}} = 0.3, a lower limit of 141 GeV on the H^{\pm\pm} mass is obtained at the 95% confidence level. For a doubly-charged Higgs decaying only into an electron and a tau and a coupling h_{e\tau} = 0.3, masses below 112 GeV are ruled out.Comment: 15 pages, 3 figures, 1 tabl

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure

    Hadron Production in Diffractive Deep-Inelastic Scattering

    Get PDF
    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.
    corecore