31 research outputs found

    Introgression of Ivermectin Resistance Genes into a Susceptible Haemonchus contortus Strain by Multiple Backcrossing

    Get PDF
    Anthelmintic drug resistance in livestock parasites is already widespread and in recent years there has been an increasing level of anthelmintic drug selection pressure applied to parasitic nematode populations in humans leading to concerns regarding the emergence of resistance. However, most parasitic nematodes, particularly those of humans, are difficult experimental subjects making mechanistic studies of drug resistance extremely difficult. The small ruminant parasitic nematode Haemonchus contortus is a more amenable model system to study many aspects of parasite biology and investigate the basic mechanisms and genetics of anthelmintic drug resistance. Here we report the successful introgression of ivermectin resistance genes from two independent ivermectin resistant strains, MHco4(WRS) and MHco10(CAVR), into the susceptible genome reference strain MHco3(ISE) using a backcrossing approach. A panel of microsatellite markers were used to monitor the procedure. We demonstrated that after four rounds of backcrossing, worms that were phenotypically resistant to ivermectin had a similar genetic background to the susceptible reference strain based on the bulk genotyping with 18 microsatellite loci and individual genotyping with a sub-panel of 9 microsatellite loci. In addition, a single marker, Hcms8a20, showed evidence of genetic linkage to an ivermectin resistance-conferring locus providing a starting point for more detailed studies of this genomic region to identify the causal mutation(s). This work presents a novel genetic approach to study anthelmintic resistance and provides a “proof-of-concept” of the use of forward genetics in an important model strongylid parasite of relevance to human hookworms. The resulting strains provide valuable resources for candidate gene studies, whole genome approaches and for further genetic analysis to identify ivermectin resistance loci

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Continence technologies whitepaper: Informing new engineering science research

    Get PDF
    Advances in healthcare technology for continence have historically been limited compared to other areas of medicine, reflecting the complexities of the condition and social stigma which act as a barrier to participation. This whitepaper has been developed to inspire and direct the engineering science community towards research opportunities that exist for continence technologies that address unmet needs in diagnosis, treatment and long-term management. Our aim is to pinpoint key challenges and highlight related research opportunities for novel technological advances. To do so, we draw on experience and expertise from academics, clinicians, patients and patient groups linked to continence healthcare. This is presented in four areas of consideration: the clinical pathway, patient perspective, research challenges and effective innovation. In each we introduce seminal research, background information and demonstrative case-studies, before discussing their relevance to engineering science researchers who are interested in approaching this overlooked but vital area of healthcare

    The rediscovery of Strix butleri (Hume, 1878) in Oman and Iran, with molecular resolution of the identity of Strix omanensis Robb, van den Berg and Constantine, 2013

    Get PDF
    Background: Many species of owls (Strigidae) represent cryptic species and their taxonomic study is in flux. In recent years, two new species of owls of the genus Strix have been described from the Middle East by different research teams. It has been suggested that one of these species, S. omanensis, is not a valid species but taxonomic comparisons have been hampered by the lack of voucher specimens of S. omanensis, and the poor state of the holotype of S. butleri. Methods: Here we use new DNA sequence data to clarify the taxonomy and nomenclature of the S. butleri complex. We also report the capture of a single S. butleri sensu stricto in Mashhad, Iran. Results: A cytochrome b sequence of S. omanensis was found to be identical to that of the holotype of S. butleri, indicating that the name S. omanensis is best regarded as a junior synonym of S. butleri. The identity of the S. butleri captured in Mashhad, Iran, was confirmed using DNA sequence data. This represents a major (1300 km) range extension of this species. Conclusions: The population discovered in Oman in 2013 and originally named 'S. omanensis' actually represents the rediscovery of S. butleri, which was known from a single specimen and had not been recorded since 1878. The range of S. butleri extends into northeast Iran. Our study augments the body of evidence for the recognition of S. butleri and S. hadorami as separate species and highlights the importance of using multiple evidence to study cryptic owl species
    corecore