274 research outputs found

    Eddy Current Detection of Nucleation and Early Growth of Semiconductor Crystals

    Get PDF
    Single crystal CdTe and its solid solution Cd1-x ZnxTe alloys (0.0

    Efficacy of an intensive outpatient rehabilitation program in alcoholism: Predictors of outcome 6 months after treatment

    Get PDF
    Treatment of alcohol-dependent patients was primarily focused on inpatient settings in the past decades. The efficacy of these treatment programs has been evaluated in several studies and proven to be sufficient. However, with regard to the increasing costs in public healthcare systems, questions about alternative treatment strategies have been raised. Meanwhile, there is growing evidence that outpatient treatment might be comparably effective as inpatient treatment, at least for subgroups of alcohol dependents. On that background, the present study aimed to evaluate the efficacy of a high-structured outpatient treatment program in 103 alcohol-dependent patients. 74 patients (72%) terminated the outpatient treatment regularly. At 6 months' follow-up, 95% patients were successfully located and personally re-interviewed. Analyses revealed that 65 patients (64%) were abstinent at the 6-month follow-up evaluation and 37 patients ( 36%) were judged to be non-abstinent. Pretreatment variables which were found to have a negative impact (non-abstinence) on the 6-month outcome after treatment were a higher severity of alcohol dependence measured by a longer duration of alcohol dependence, a higher number of prior treatments and a stronger alcohol craving (measured by the Obsessive Compulsive Drinking Scale). Further patients with a higher degree of psychopathology measured by the Beck Depression Inventory (depression) and State-Trait Anxiety Inventory (anxiety) relapsed more often. In summary, results of this study indicate a favorable outcome of socially stable alcohol-dependent patients and patients with a lower degree of depression, anxiety and craving in an intensive outpatient rehabilitation program

    Revisiting special relativity: A natural algebraic alternative to Minkowski spacetime

    Get PDF
    Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension ict i c t , with the unit imaginary producing the correct spacetime distance x2c2t2 x^2 - c^2 t^2 , and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary i=1 i = \sqrt{-1} , with the Clifford bivector ι=e1e2 \iota = e_1 e_2 for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis e1 e_1 and e2 e_2 . We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.Comment: 29 pages, 2 figure

    Challenging fear: Chemical alarm signals are not causing morphology changes in crucian carp (Carassius carassius)

    Get PDF
    Crucian carp develops a deep body in the presence of chemical cues from predators, which makes the fish less vulnerable to gape-limited predators. The active components originate in conspecifics eaten by predators, and are found in the filtrate of homogenised conspecific skin. Chemical alarm signals, causing fright reactions, have been the suspected inducers of such morphological changes. We improved the extraction procedure of alarm signals by collecting the supernatant after centrifugation of skin homogenates. This removes the minute particles that normally make a filtered sample get turbid. Supernatants were subsequently diluted and frozen into ice-cubes. Presence of alarm signals was confirmed by presenting thawed ice-cubes to crucian carp in behaviour tests at start of laboratory growth experiments. Frozen extracts were added further on three times a week. Altogether, we tested potential body-depth-promoting properties of alarm signals twice in the laboratory and once in the field. Each experiment lasted for a minimum of 50 days. Despite growth of crucian carp in all experiments, no morphology changes were obtained. Accordingly, we conclude that the classical alarm signals that are releasing instant fright reactions are not inducing morphological changes in this species. The chemical signals inducing a body-depth increase are suspected to be present in the particles removed during centrifugation (i.e., in the precipitate). Tissue particles may be metabolized by bacteria in the intestine of predators, resulting in water-soluble cues. Such latent chemical signals have been found in other aquatic organisms, but hitherto not reported in fishe

    Epidermal Growth Factor Receptor (EGFR) Expression in Operable Non-small Cell Lung Carcinoma

    Get PDF
    This study was performed to assay the expression of epidermal growth factor receptor (EGFR) in non-small cell lung carcinoma (NSCLC), and to investigate the relationship between EGFR status and various clinicopathologic features of NSCLC, including angiogenesis and proliferative activity. The expression of EGFR, microvessel count (MVC) measured by CD31 monoclonal antibody, and proliferative activity using Ki-67 labeling index were immunohistochemically analyzed in formalin-fixed and paraffin-embedded tissue specimens from 65 patients with completely resected stage II-IIIA NSCLC. Pathologic and clinical records of all patients were retrospectively reviewed. EGFR was expressed in 18 (28%) of 65 NSCLC samples. More squamous tumors (35%) were EGFR-positive than other NSCLCs (23%) (p-value 0.308). There was a statistically significant correlation between EGFR expression and Ki-67 labeling index (p-value 0.042), but no correlation was observed between EGFR expression and tumor histology, stage, or MVC. There were no differences between EGFR positive and negative tumors in 5-yr disease-free survival (60% vs. 52%, p-value 0.5566) and 5-yr overall survival (53% vs. 45%, p-value 0.3382) rates. In conclusion, our findings suggest that NSCLC proliferative activity may be dependent on EGFR expression, but that EGFR expression had no significant impact on survival in curatively resected NSCLC

    Fidelity Variants of RNA Dependent RNA Polymerases Uncover an Indirect, Mutagenic Activity of Amiloride Compounds

    Get PDF
    In a screen for RNA mutagen resistance, we isolated a high fidelity RNA dependent RNA polymerase (RdRp) variant of Coxsackie virus B3 (CVB3). Curiously, this variant A372V is also resistant to amiloride. We hypothesize that amiloride has a previously undescribed mutagenic activity. Indeed, amiloride compounds increase the mutation frequencies of CVB3 and poliovirus and high fidelity variants of both viruses are more resistant to this effect. We hypothesize that this mutagenic activity is mediated through alterations in intracellular ions such as Mg2+ and Mn2+, which in turn increase virus mutation frequency by affecting RdRp fidelity. Furthermore, we show that another amiloride-resistant RdRp variant, S299T, is completely resistant to this mutagenic activity and unaffected by changes in ion concentrations. We show that RdRp variants resist the mutagenic activity of amiloride via two different mechanisms: 1) increased fidelity that generates virus populations presenting lower basal mutation frequencies or 2) resisting changes in divalent cation concentrations that affect polymerase fidelity. Our results uncover a new antiviral approach based on mutagenesis

    Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil Spill

    Get PDF
    Oil spills represent a major environmental threat to coastal wetlands, which provide a variety of critical ecosystem services to humanity. The U.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted intertidal habitats such as salt marsh. Following the BP Deepwater Horizon oil spill, we sampled the terrestrial arthropod community and marine invertebrates found in stands of Spartina alterniflora, the most abundant plant in coastal salt marshes. Sampling occurred in 2010 as oil was washing ashore and a year later in 2011. In 2010, intertidal crabs and terrestrial arthropods (insects and spiders) were suppressed by oil exposure even in seemingly unaffected stands of plants; however, Littoraria snails were unaffected. One year later, crab and arthropods had largely recovered. Our work is the first attempt that we know of assessing vulnerability of the salt marsh arthropod community to oil exposure, and it suggests that arthropods are both quite vulnerable to oil exposure and quite resilient, able to recover from exposure within a year if host plants remain healthy

    Computational geometry analysis of dendritic spines by structured illumination microscopy

    Get PDF
    We are currently short of methods that can extract objective parameters of dendritic spines useful for their categorization. Authors present in this study an automatic analytical pipeline for spine geometry using 3D-structured illumination microscopy, which can effectively extract many geometrical parameters of dendritic spines without bias and automatically categorize spine population based on their morphological feature

    Quasispecies Theory and the Behavior of RNA Viruses

    Get PDF
    A large number of medically important viruses, including HIV, hepatitis C virus, and influenza, have RNA genomes. These viruses replicate with extremely high mutation rates and exhibit significant genetic diversity. This diversity allows a viral population to rapidly adapt to dynamic environments and evolve resistance to vaccines and antiviral drugs. For the last 30 years, quasispecies theory has provided a population-based framework for understanding RNA viral evolution. A quasispecies is a cloud of diverse variants that are genetically linked through mutation, interact cooperatively on a functional level, and collectively contribute to the characteristics of the population. Many predictions of quasispecies theory run counter to traditional views of microbial behavior and evolution and have profound implications for our understanding of viral disease. Here, we discuss basic principles of quasispecies theory and describe its relevance for our understanding of viral fitness, virulence, and antiviral therapeutic strategy

    Does Mutational Robustness Inhibit Extinction by Lethal Mutagenesis in Viral Populations?

    Get PDF
    Lethal mutagenesis is a promising new antiviral therapy that kills a virus by raising its mutation rate. One potential shortcoming of lethal mutagenesis is that viruses may resist the treatment by evolving genomes with increased robustness to mutations. Here, we investigate to what extent mutational robustness can inhibit extinction by lethal mutagenesis in viruses, using both simple toy models and more biophysically realistic models based on RNA secondary-structure folding. We show that although the evolution of greater robustness may be promoted by increasing the mutation rate of a viral population, such evolution is unlikely to greatly increase the mutation rate required for certain extinction. Using an analytic multi-type branching process model, we investigate whether the evolution of robustness can be relevant on the time scales on which extinction takes place. We find that the evolution of robustness matters only when initial viral population sizes are small and deleterious mutation rates are only slightly above the level at which extinction can occur. The stochastic calculations are in good agreement with simulations of self-replicating RNA sequences that have to fold into a specific secondary structure to reproduce. We conclude that the evolution of mutational robustness is in most cases unlikely to prevent the extinction of viruses by lethal mutagenesis
    corecore