1,076 research outputs found

    Randomized trial of FK 506/prednisone vs FK 506/azathioprine/prednisone after renal transplantation: preliminary report.

    Get PDF
    FK 506 was used as a primary immunosuppressive agent in 125 cases of renal transplantation in a randomized trial comparing FK 506/prednisone with FK 506/azathioprine/prednisone. With a mean follow-up of 5.5 +/- 2.5 months, there has been a 6-month actuarial patient survival of 99% and graft survival of 88%. There is no difference thus far between the two-drug and three-drug groups, although there may be less rejection and diabetes in the three-drug group. These results suggest that FK 506 is a useful immunosuppressive agent in kidney transplantation

    Neutrino-driven Explosions

    Full text link
    The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. A solution is crucial for deciphering the SN phenomenon, for predicting observable signals such as light curves and spectra, nucleosynthesis, neutrinos, and gravitational waves, for defining the role of SNe in the evolution of galaxies, and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the SN in the explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core-bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN blast. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next Galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star. (abridged)Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A. Alsabti and P. Murdin, Springer. 54 pages, 13 figure

    Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3

    Get PDF
    double Holliday junction (dHJ) is a central intermediate of homologous recombination that can be processed to yield crossover or non-crossover recombination products. To preserve genomic integrity, cells possess mechanisms to avoid crossing over. We show that Saccharomyces cerevisiae Sgs1 and Top3 proteins are sufficient to migrate and disentangle a dHJ to produce exclusively non-crossover recombination products, in a reaction termed "dissolution." We show that Rmi1 stimulates dHJ dissolution at low Sgs1-Top3 protein concentrations, although it has no effect on the initial rate of Holliday junction (HJ) migration. Rmi1 serves to stimulate DNA decatenation, removing the last linkages between the repaired and template DNA molecules. Dissolution of a dHJ is a highly efficient and concerted alternative to nucleolytic resolution that prevents crossing over of chromosomes during recombinational DNA repair in mitotic cells and thereby contributes to genomic integrity

    Is Bacterial Persistence a Social Trait?

    Get PDF
    The ability of bacteria to evolve resistance to antibiotics has been much reported in recent years. It is less well-known that within populations of bacteria there are cells which are resistant due to a non-inherited phenotypic switch to a slow-growing state. Although such ‘persister’ cells are receiving increasing attention, the evolutionary forces involved have been relatively ignored. Persistence has a direct benefit to cells because it allows survival during catastrophes–a form of bet-hedging. However, persistence can also provide an indirect benefit to other individuals, because the reduced growth rate can reduce competition for limiting resources. This raises the possibility that persistence is a social trait, which can be influenced by kin selection. We develop a theoretical model to investigate the social consequences of persistence. We predict that selection for persistence is increased when: (a) cells are related (e.g. a single, clonal lineage); and (b) resources are scarce. Our model allows us to predict how the level of persistence should vary with time, across populations, in response to intervention strategies and the level of competition. More generally, our results clarify the links between persistence and other bet-hedging or social behaviours

    Interpretation of Binary Pulsar Observations

    Get PDF
    The nature, dynamics and evolution of the three known radio pulsar binaries are discussed. The system containing 1913+16 appears to comprise two ~1.4 M⊙ components, and to undergo orbital decay as predicted by general relativity. It is proposed that 1913+16 has a neutron star companion and that 0655+64 and 0820+02 have white dwarf companions which should be observable optically

    The prevalence of BRCA1 mutations among young women with triple-negative breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular screening for BRCA1 and BRCA2 mutations is now an established component of risk evaluation and management of familial breast cancer. Features of hereditary breast cancer include an early age-of-onset and over-representation of the 'triple-negative' phenotype (negative for estrogen-receptor, progesterone-receptor and HER2). The decision to offer genetic testing to a breast cancer patient is usually based on her family history, but in the absence of a family history of cancer, some women may qualify for testing based on the age-of-onset and/or the pathologic features of the breast cancer.</p> <p>Methods</p> <p>We studied 54 women who were diagnosed with high-grade, triple-negative invasive breast cancer at or before age 40. These women were selected for study because they had little or no family history of breast or ovarian cancer and they did not qualify for genetic testing using conventional family history criteria. BRCA1 screening was performed using a combination of fluorescent multiplexed-PCR analysis, BRCA1 exon-13 6 kb duplication screening, the protein truncation test (PTT) and fluorescent multiplexed denaturing gradient gel electrophoresis (DGGE). All coding exons of BRCA1 were screened. The two large exons of BRCA2 were also screened using PTT. All mutations were confirmed with direct sequencing.</p> <p>Results</p> <p>Five deleterious BRCA1 mutations and one deleterious BRCA2 mutation were identified in the 54 patients with early-onset, triple-negative breast cancer (11%).</p> <p>Conclusion</p> <p>Women with early-onset triple-negative breast cancer are candidates for genetic testing for BRCA1, even in the absence of a family history of breast or ovarian cancer.</p

    Using observational data to estimate an upper bound on the reduction in cancer mortality due to periodic screening

    Get PDF
    BACKGROUND: Because randomized cancer screening trials are very expensive, observational cancer screening studies can play an important role in the early phases of screening evaluation. Periodic screening evaluation (PSE) is a methodology for estimating the reduction in population cancer mortality from data on subjects who receive regularly scheduled screens. Although PSE does not require assumptions about natural history of cancer it requires other assumptions, particularly progressive detection – the assumption that once a cancer is detected by a screening test, it will always be detected by the screening test. METHODS: We formulate a simple version of PSE and show that it leads to an upper bound on screening efficacy if the progressive detection assumption does not hold (and any effect of birth cohort is minimal) To determine if the upper bound is reasonable, for three randomized screening trials, we compared PSE estimates based only on screened subjects with PSE estimates based on all subjects. RESULTS: In the three randomized screening trials, PSE estimates based on screened subjects gave fairly close results to PSE estimates based on all subjects. CONCLUSION: PSE has promise for obtaining an upper bound on the reduction in population cancer mortality rates based on observational screening data. If the upper bound estimate is found to be small and any birth cohort effects are likely minimal, then a definitive randomized trial would not be warranted

    Gravitational Waves from Gravitational Collapse

    Get PDF
    Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state of the art numerical investigations of collapse include those that use progenitors with realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non--axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Comparative study of imaging at 3.0 T versus 1.5 T of the knee

    Get PDF
    The objectives of the study were to compare MR imaging at 1.5 and 3.0 T in the same patients concerning image quality and visualization of cartilage pathology and to assess diagnostic performance using arthroscopy as a standard of reference. Twenty-six patients were identified retrospectively as having comparative 1.5 and 3.0 T MR studies of the knee within an average of 102 days. Standard protocols included T1-weighted and fat-saturated intermediate-weighted fast spin-echo sequences in three planes; sequence parameters had been adjusted to account for differences in relaxation at 3.0 T. Arthroscopy was performed in 19 patients. Four radiologists reviewed each study independently, scored image quality, and analyzed pathological findings. Sensitivities, specificities, and accuracies in diagnosing cartilage lesions were calculated in the 19 patients with arthroscopy, and differences between 1.5 and 3.0 T exams were compared using paired Student’s t tests with a significance threshold of p &lt; 0.05. Each radiologist scored the 3.0 T studies higher than those obtained at 1.5 T in visualizing anatomical structures and abnormalities (p &lt; 0.05). Using arthroscopy as a standard of reference, diagnosis of cartilage abnormalities was improved at 3.0 T with higher sensitivity (75.7% versus 70.6%), accuracy (88.2% versus 86.4%), and correct grading of cartilage lesions (51.3% versus 42.9%). Diagnostic confidence scores were higher at 3.0 than 1.5 T (p &lt; 0.05) and signal-to-noise ratio at 3.0 T was approximately twofold higher than at 1.5 T. MRI at 3.0 T improved visualization of anatomical structures and improved diagnostic confidence compared to 1.5 T. This resulted in significantly better sensitivity and grading of cartilage lesions at the knee
    corecore