244 research outputs found

    First direct observation of the Van Hove singularity in the tunneling spectra of cuprates

    Get PDF
    In two-dimensional lattices the electronic levels are unevenly spaced, and the density of states (DOS) displays a logarithmic divergence known as the Van Hove singularity (VHS). This is the case in particular for the layered cuprate superconductors. The scanning tunneling microscope (STM) probes the DOS, and is therefore the ideal tool to observe the VHS. No STM study of cuprate superconductors has reported such an observation so far giving rise to a debate about the possibility of observing directly the normal state DOS in the tunneling spectra. In this study, we show for the first time that the VHS is unambiguously observed in STM measurements performed on the cuprate Bi-2201. Beside closing the debate, our analysis proves the presence of the pseudogap in the overdoped side of the phase diagram of Bi-2201 and discredits the scenario of the pseudogap phase crossing the superconducting dome.Comment: 4 pages, 4 figure

    Disentangling Cooper-pair formation above Tc from the pseudogap state in the cuprates

    Full text link
    The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this "pre-formed pairs" scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the "pseudogap", two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the "proper" pseudogap - characterized by a "checker board" pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.Comment: 9 pages, 4 figure

    STM imaging of symmetry-breaking structural distortion in the Bi-based cuprate superconductors

    Get PDF
    A complicating factor in unraveling the theory of high-temperature (high-Tc) superconductivity is the presence of a "pseudogap" in the density of states, whose origin has been debated since its discovery [1]. Some believe the pseudogap is a broken symmetry state distinct from superconductivity [2-4], while others believe it arises from short-range correlations without symmetry breaking [5,6]. A number of broken symmetries have been imaged and identified with the pseudogap state [7,8], but it remains crucial to disentangle any electronic symmetry breaking from pre-existing structural symmetry of the crystal. We use scanning tunneling microscopy (STM) to observe an orthorhombic structural distortion across the cuprate superconducting Bi2Sr2Can-1CunO2n+4+x (BSCCO) family tree, which breaks two-dimensional inversion symmetry in the surface BiO layer. Although this inversion symmetry breaking structure can impact electronic measurements, we show from its insensitivity to temperature, magnetic field, and doping, that it cannot be the long-sought pseudogap state. To detect this picometer-scale variation in lattice structure, we have implemented a new algorithm which will serve as a powerful tool in the search for broken symmetry electronic states in cuprates, as well as in other materials.Comment: 4 figure

    Direct evidence for a competition between the pseudogap and high temperature superconductivity in the cuprates

    Full text link
    A pairing gap and coherence are the two hallmarks of superconductivity. In a classical BCS superconductor they are established simultaneously at Tc. In the cuprates, however, an energy gap (pseudogap) extends above Tc. The origin of this gap is one of the central issues in high temperature superconductivity. Recent experimental evidence demonstrates that the pseudogap and the superconducting gap are associated with different energy scales. It is however not clear whether they coexist independently or compete. In order to understand the physics of cuprates and improve their superconducting properties it is vital to determine whether the pseudogap is friend or foe of high temperature supercondctivity. Here we report evidence from angle resolved photoemission spectroscopy (ARPES) that the pseudogap and high temperature superconductivity represent two competing orders. We find that there is a direct correlation between a loss in the low energy spectral weight due to the pseudogap and a decrease of the coherent fraction of paired electrons. Therefore, the pseudogap competes with the superconductivity by depleting the spectral weight available for pairing in the region of momentum space where the superconducting gap is largest. This leads to a very unusual state in the underdoped cuprates, where only part of the Fermi surface develops coherence.Comment: Improved version was published in Natur

    Adaptive Significance of the Formation of Multi-Species Fish Spawning Aggregations near Submerged Capes

    Get PDF
    BACKGROUND: Many fishes are known to spawn at distinct geomorphological features such as submerged capes or "promontories," and the widespread use of these sites for spawning must imply some evolutionary advantage. Spawning at these capes is thought to result in rapid offshore transport of eggs, thereby reducing predation levels and facilitating dispersal to areas of suitable habitat. METHODOLOGY/PRINCIPAL FINDINGS: To test this "off-reef transport" hypothesis, we use a hydrodynamic model and explore the effects of topography on currents at submerged capes where spawning occurs and at similar capes where spawning does not occur, along the Mesoamerican Barrier Reef. All capes modeled in this study produced eddy-shedding regimes, but specific eddy attributes differed between spawning and non-spawning sites. Eddies at spawning sites were significantly stronger than those at non-spawning sites, and upwelling and fronts were the products of the eddy formation process. Frontal zones, present particularly at the edges of eddies near the shelf, may serve to retain larvae and nutrients. Spawning site eddies were also more predictable in terms of diameter and longevity. Passive particles released at spawning and control sites were dispersed from the release site at similar rates, but particles from spawning sites were more highly aggregated in their distributions than those from control sites, and remained closer to shore at all times. CONCLUSIONS/SIGNIFICANCE: Our findings contradict previous hypotheses that cape spawning leads to high egg dispersion due to offshore transport, and that they are attractive for spawning due to high, variable currents. Rather, we show that current regimes at spawning sites are more predictable, concentrate the eggs, and keep larvae closer to shore. These attributes would confer evolutionary advantages by maintaining relatively similar recruitment patterns year after year

    A Cell-Based Model for Quorum Sensing in Heterogeneous Bacterial Colonies

    Get PDF
    Although bacteria are unicellular organisms, they have the ability to act in concert by synthesizing and detecting small diffusing autoinducer molecules. The phenomenon, known as quorum sensing, has mainly been proposed to serve as a means for cell-density measurement. Here, we use a cell-based model of growing bacterial microcolonies to investigate a quorum-sensing mechanism at a single cell level. We show that the model indeed predicts a density-dependent behavior, highly dependent on local cell-clustering and the geometry of the space where the colony is evolving. We analyze the molecular network with two positive feedback loops to find the multistability regions and show how the quorum-sensing mechanism depends on different model parameters. Specifically, we show that the switching capability of the network leads to more constraints on parameters in a natural environment where the bacteria themselves produce autoinducer than compared to situations where autoinducer is introduced externally. The cell-based model also allows us to investigate mixed populations, where non-producing cheater cells are shown to have a fitness advantage, but still cannot completely outcompete producer cells. Simulations, therefore, are able to predict the relative fitness of cheater cells from experiments and can also display and account for the paradoxical phenomenon seen in experiments; even though the cheater cells have a fitness advantage in each of the investigated groups, the overall effect is an increase in the fraction of producer cells. The cell-based type of model presented here together with high-resolution experiments will play an integral role in a more explicit and precise comparison of models and experiments, addressing quorum sensing at a cellular resolution

    From Senseless to Sensory Democracy: Insights from Applied and Participatory Theatre

    Get PDF
    This article seeks to stimulate a fresh and inter-disciplinary debate which revolves around the need to move from a ‘senseless democracy’ that is insufficiently attuned to the dilemmas and challenges of fostering meaningful political engagement to a more ‘sensory democracy’. It achieves this by first exploring and dissecting recent works within democratic theory that emphasize the role of ‘watching’ and ‘listening’ within socio-political relationships. It then goes on to develop a set of constructive criticisms by applying insights drawn from the fields of practical aesthetics and applied theatre. Not only does this exercise allow us to take the analytical lens far beyond the focus on voice-based forms of expression that have hitherto dominated political analysis, it demonstrates the value of inter-disciplinary scholarship in exposing sensory-subtleties that raise distinctive questions for both politics ‘as theory’ and politics ‘as practice’

    Needs-oriented discharge planning and monitoring for high utilisers of psychiatric services (NODPAM): Design and methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Attempts to reduce high utilisation of psychiatric inpatient care by targeting the critical time of hospital discharge have been rare.</p> <p>Methods</p> <p>This paper presents design and methods of the study "Effectiveness and Cost-Effectiveness of Needs-Oriented Discharge Planning and Monitoring for High Utilisers of Psychiatric Services" (NODPAM), a multicentre RCT conducted in five psychiatric hospitals in Germany. Inclusion criteria are receipt of inpatient psychiatric care, adult age, diagnosis of schizophrenia or affective disorder, defined high utilisation of psychiatric care during two years prior to the current admission, and given informed consent. Consecutive recruitment started in April 2006. Since then, during a period of 18 months, comprehensive outcome data of 490 participants is being collected at baseline and during three follow-up measurement points.</p> <p>The manualised intervention applies principles of needs-led care and focuses on the inpatient-outpatient transition. A trained intervention worker provides two intervention sessions: (a) Discharge planning: Just before discharge with the patient and responsible clinician at the inpatient service; (b) Monitoring: Three months after discharge with the patient and outpatient clinician. A written treatment plan is signed by all participants after each session.</p> <p>Primary endpoints are whether participants in the intervention group will show fewer hospital days and readmissions to hospital. Secondary endpoints are better compliance with aftercare, better clinical outcome and quality of life, as well as cost-effectiveness and cost-utility.</p> <p>Discussion</p> <p>If a needs-oriented discharge planning and monitoring proves to be successful in this RCT, a tool will be at hand to improve patient outcome and reduce costs via harmonising fragmented mental health service provision.</p> <p>Trial Registration</p> <p>ISRCTN59603527</p

    Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The SRY-related HMG-box family of transcription factors member <it>SOX2 </it>has been mainly studied in embryonic stem cells as well as early foregut and neural development. More recently, SOX2 was shown to participate in reprogramming of adult somatic cells to a pluripotent stem cell state and implicated in tumorigenesis in various organs. In breast cancer, SOX2 expression was reported as a feature of basal-like tumors. In this study, we assessed SOX2 expression in 95 primary tumors of postmenopausal breast cancer patients.</p> <p>Methods</p> <p>Samples from 95 patients diagnosed and treated at the University of Tuebingen Institute of Pathology and Women's Hospital were analyzed by immunohistochemistry for SOX2 expression in the primary tumor samples and in corresponding lymph node metastasis, where present. Furthermore, SOX2 amplification status was assessed by FISH in representative samples. In addition, eighteen fresh frozen samples were analyzed for <it>SOX2</it>, <it>NANOG </it>and <it>OCT4 </it>gene expression by real-time PCR.</p> <p>Results</p> <p>SOX2 expression was detected in 28% of invasive breast carcinoma as well as in 44% of ductal carcinoma in situ (DCIS) lesions. A score of SOX2 expression (score 0 to 3) was defined in order to distinguish SOX2 negative (score 0) from SOX2 positive samples (score 1-3) and among latter the subgroup of SOX2 high expressors (score 3 > 50% positive cells). Overall, the incidence of SOX2 expression (score 1-3) was higher than previously reported in a cohort of lymph node negative patients (28% versus 16.7%). SOX2 expression was detected across different breast cancer subtypes and did not correlate with tumor grading. However, high SOX2 expression (score 3) was associated with larger tumor size (p = 0.047) and positive lymph node status (0.018). Corresponding metastatic lymph nodes showed higher SOX2 expression and were significantly more often SOX2 positive than primary tumors (p = 0.0432).</p> <p>Conclusions</p> <p>In this report, we show that the embryonic stem cell factor SOX2 is expressed in a variety of early stage postmenopausal breast carcinomas and metastatic lymph nodes. Our data suggest that SOX2 plays an early role in breast carcinogenesis and high expression may promote metastatic potential. Further studies are needed to explore whether SOX2 can predict metastatic potential at an early tumor stage.</p
    corecore