14 research outputs found

    Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars

    Get PDF
    Lakes existed on Mars later than 3.6 billion years ago, according to sedimentary evidence for deltaic deposition. The observed fluviolacustrine deposits suggest that individual lake-forming climates persisted for at least several thousand years (assuming dilute flow). But the lake watersheds’ little-weathered soils indicate a largely dry climate history, with intermittent runoff events. Here we show that these observational constraints, although inconsistent with many previously proposed triggers for lake-forming climates, are consistent with a methane burst scenario. In this scenario, chaotic transitions in mean obliquity drive latitudinal shifts in temperature and ice loading that destabilize methane clathrate. Using numerical simulations, we find that outgassed methane can build up to atmospheric levels sufficient for lake-forming climates, if methane clathrate initially occupies more than 4% of the total volume in which it is thermodynamically stable. Such occupancy fractions are consistent with methane production by water–rock reactions due to hydrothermal circulation on early Mars. We further estimate that photochemical destruction of atmospheric methane curtails the duration of individual lake-forming climates to less than a million years, consistent with observations. We conclude that methane bursts represent a potential pathway for intermittent excursions to a warm, wet climate state on early Mars

    Topographic and stochastic influences on pāhoehoe lava lobe emplacement

    Get PDF
    A detailed understanding of pāhoehoe emplacement is necessary for developing accurate models of flow field development, assessing hazards, and interpreting the significance of lava morphology on Earth and other planetary surfaces. Active pāhoehoe lobes on Kīlauea Volcano, Hawai'i, were examined on 21–26 February 2006 using oblique time series stereo-photogrammetry and differential global positioning system measurements. During this time, the local discharge rate for peripheral lava lobes was generally constant at 0.0061±0.0019 m3/s, but the areal coverage rate of the lobes exhibited a periodic increase every 4.13±0.64 min. This periodicity is attributed to the time required for the pressure within the liquid lava core to exceed the cooling-induced strength of its margins. The pāhoehoe flow advanced through a series of down-slope and cross-slope breakouts, which began as ∼0.2-m-thick units (i.e., toes) that coalesced and inflated to become approximately meter-thick lobes. The lobes were thickest above the lowest points of the initial topography and above shallow to reverse-facing slopes, defined relative to the local flow direction. The flow path was typically controlled by high-standing topography, with the zone directly adjacent to the final lobe margin having an average relief that was a few centimeters higher than the lava-inundated region. This suggests that toe-scale topography can, at least temporarily, exert strong controls on pāhoehoe flow paths by impeding the lateral spreading of the lobe. Observed cycles of enhanced areal spreading and inflated lobe morphology are also explored using a model that considers the statistical likelihood of sequential breakouts from active flow margins and the effects of topographic barriers

    Genetics of Asthma and Bronchial Hyperresponsiveness

    No full text
    corecore