462 research outputs found
Nanofiber-based filters as novel barrier systems for nanomaterial exposure scenarios
In this article our latest advances in the development of efficient barrier systems against micro- and nano-particulate materials are presented. Nanofibrous polyamide 6 (PA6) mats were fabricated by electrospinning onto a nonwoven viscose substrate. The influence of electrospinning parameters including solution concentration, viscosity, and conductivity, were studied for the production of nonwovens with different fiber size distribution ranging from 74 to 261 nm in diameters. Moreover, the formation of nanowebs (30-40 nm) which are widely distributed among fibers was observed. By varying several process parameters, membranes with different thickness of the nanofiber layer and therefore air permeability and nanoparticle filtration efficiency were obtained.The financial support of this work was provided by MICINN (Spanish Ministry of Science and
Innovation) and ERDF (European Regional Development Fund) (ref: PSE-420000-2008-003)
Recommended Personal Protective Equipment for Cochlear Implant and Other Mastoid Surgery During the COVID-19 Era
© 2020 American Laryngological, Rhinological and Otological Society Inc, "The Triological Society" and American Laryngological Association (ALA) Objectives/Hypothesis: The overall aim of this study was to evaluate personal protective equipment (PPE) that may facilitate the safe recommencement of cochlear implantation in the COVID-19 era, with the broader goal of minimizing the period of auditory deprivation in prelingually deaf children and reducing the risk of cochlear ossification in individuals following meningitis. Methods: The study design comprised 1) an objective assessment of mastoid drilling-induced droplet spread conducted during simulated cochlear implant (CI) surgery and its mitigation via the use of a protective drape tent and 2) an evaluation of three PPE configurations by otologists while performing mastoid drilling on ex vivo temporal bones. The various PPE solutions were assessed in terms of their impact on communication, vital physiological parameters, visual acuity and fields, and acceptability to surgeons using a systematic risk-based approach. Results: Droplet spread during simulated CI surgery extended over 2 m, a distance greater than previously reported. A drape tent significantly reduced droplet spread. The ensemble of a half-face mask and safety spoggles (foam lined safety goggles) had consistently superior performance across all aspects of clinical usability. All other PPE options were found to substantially restrict the visual field, making them unsafe for microsurgery. Conclusions: The results of this preclinical study indicate that the most viable solution to enable the safe conduct of CI and other mastoid surgery is a combination of a filtering facepiece (FFP)3 mask or half-face respirator with safety spoggles as PPE. Prescription spoggles are an option for surgeons who need to wear corrective glasses to operate. A drape tent reduces droplet spread. A multicenter clinical trial to evaluate the effectiveness of PPE should be the next step toward safely performing CI surgery during the COVID-19 era. Level of Evidence: 4 Laryngoscope, 2020
Mosquito coil emissions and health implications.
Burning mosquito coils indoors generates smoke that can control mosquitoes effectively. This practice is currently used in numerous households in Asia, Africa, and South America. However, the smoke may contain pollutants of health concern. We conducted the present study to characterize the emissions from four common brands of mosquito coils from China and two common brands from Malaysia. We used mass balance equations to determine emission rates of fine particles (particulate matter < 2.5 microm in diameter; PM(2.5)), polycyclic aromatic hydrocarbons (PAHs), aldehydes, and ketones. Having applied these measured emission rates to predict indoor concentrations under realistic room conditions, we found that pollutant concentrations resulting from burning mosquito coils could substantially exceed health-based air quality standards or guidelines. Under the same combustion conditions, the tested Malaysian mosquito coils generated more measured pollutants than did the tested Chinese mosquito coils. We also identified a large suite of volatile organic compounds, including carcinogens and suspected carcinogens, in the coil smoke. In a set of experiments conducted in a room, we examined the size distribution of particulate matter contained in the coil smoke and found that the particles were ultrafine and fine. The findings from the present study suggest that exposure to the smoke of mosquito coils similar to the tested ones can pose significant acute and chronic health risks. For example, burning one mosquito coil would release the same amount of PM(2.5) mass as burning 75-137 cigarettes. The emission of formaldehyde from burning one coil can be as high as that released from burning 51 cigarettes
Influence of Olfactory Epithelium on Mitral/Tufted Cell Dendritic Outgrowth
Stereotypical connections between olfactory sensory neuron axons and mitral cell dendrites in the olfactory bulb establish the first synaptic relay for olfactory perception. While mechanisms of olfactory sensory axon targeting are reported, molecular regulation of mitral cell dendritic growth and refinement are unclear. During embryonic development, mitral cell dendritic distribution overlaps with olfactory sensory axon terminals in the olfactory bulb. In this study, we investigate whether olfactory sensory neurons in the olfactory epithelium influence mitral cell dendritic outgrowth in vitro. We report a soluble trophic activity in the olfactory epithelium conditioned medium which promotes mitral/tufted cell neurite outgrowth. While the trophic activity is present in both embryonic and postnatal olfactory epithelia, only embryonic but not postnatal mitral/tufted cells respond to this activity. We show that BMP2, 5 and 7 promote mitral/tufted cells neurite outgrowth. However, the BMP antagonist, Noggin, fails to neutralize the olfactory epithelium derived neurite growth promoting activity. We provide evidence that olfactory epithelium derived activity is a protein factor with molecular weight between 50–100 kD. We also observed that Follistatin can effectively neutralize the olfactory epithelium derived activity, suggesting that TGF-beta family proteins are involved to promote mitral/tufted dendritic elaboration
Airborne Microalgae: Insights, Opportunities and Challenges
Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concentration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment and possibly influence their deposition rates. This minireview presents a summary of these studies and traces the possible route, step-by-step, from established ecosystems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and environment, and the state-of-the-art techniques to detect
and model airborne microalgae dispersal. More detailed studies on microalgae atmospheric-cycle, including for instance ice nucleation activity and transport simulations, are crucial for improving our understanding of microalgae ecology, identifying their interactions with the environment and preventing unwanted sanitary events or invasions
Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities
Currently, there are no air quality regulations in force in any part of the world to control number concentrations of airborne atmospheric nanoparticles (ANPs). This is partly due to a lack of reliable information on measurement methods, dispersion characteristics, modelling, health and other environmental impacts. Because of the special characteristics of manufactured (also termed engineered or synthesised) nanomaterials or nanoparticles (MNPs), a substantial increase is forecast for their manufacture and use, despite understanding of safe design and use, and health and environmental implications being in its early stage. This article discusses a number of underlining technical issues by comparing the properties and behaviour of MNPs with anthropogenically produced ANPs. Such a comparison is essential for the judicious treatment of the MNPs in any potential air quality regulatory framework for ANPs
Collection of Aerosolized Human Cytokines Using Teflon® Filters
Background: Collection of exhaled breath samples for the analysis of inflammatory biomarkers is an important area of research aimed at improving our ability to diagnose, treat and understand the mechanisms of chronic pulmonary disease. Current collection methods based on condensation of water vapor from exhaled breath yield biomarker levels at or near the detection limits of immunoassays contributing to problems with reproducibility and validity of biomarker measurements. In this study, we compare the collection efficiency of two aerosol-to-liquid sampling devices to a filter-based collection method for recovery of dilute laboratory generated aerosols of human cytokines so as to identify potential alternatives to exhaled breath condensate collection. Methodology/Principal Findings: Two aerosol-to-liquid sampling devices, the SKC® Biosampler and Omni 3000™, as well as Teflon® filters were used to collect aerosols of human cytokines generated using a HEART nebulizer and single-pass aerosol chamber setup in order to compare the collection efficiencies of these sampling methods. Additionally, methods for the use of Teflon® filters to collect and measure cytokines recovered from aerosols were developed and evaluated through use of a high-sensitivity multiplex immunoassay. Our results show successful collection of cytokines from pg/m3 aerosol concentrations using Teflon® filters and measurement of cytokine levels in the sub-picogram/mL concentration range using a multiplex immunoassay with sampling times less than 30 minutes. Significant degradation of cytokines was observed due to storage of cytokines in concentrated filter extract solutions as compared to storage of dry filters. Conclusions: Use of filter collection methods resulted in significantly higher efficiency of collection than the two aerosol-to-liquid samplers evaluated in our study. The results of this study provide the foundation for a potential new technique to evaluate biomarkers of inflammation in exhaled breath samples
- …