8 research outputs found

    Oldest Known Eucalyptus Macrofossils Are from South America

    Get PDF
    The evolutionary history of Eucalyptus and the eucalypts, the larger clade of seven genera including Eucalyptus that today have a natural distribution almost exclusively in Australasia, is poorly documented from the fossil record. Little physical evidence exists bearing on the ancient geographical distributions or morphologies of plants within the clade. Herein, we introduce fossil material of Eucalyptus from the early Eocene (ca. 51.9 Ma) Laguna del Hunco paleoflora of Chubut Province, Argentina; specimens include multiple leaves, infructescences, and dispersed capsules, several flower buds, and a single flower. Morphological similarities that relate the fossils to extant eucalypts include leaf shape, venation, and epidermal oil glands; infructescence structure; valvate capsulate fruits; and operculate flower buds. The presence of a staminophore scar on the fruits links them to Eucalyptus, and the presence of a transverse scar on the flower buds indicates a relationship to Eucalyptus subgenus Symphyomyrtus. Phylogenetic analyses of morphological data alone and combined with aligned sequence data from a prior study including 16 extant eucalypts, one outgroup, and a terminal representing the fossils indicate that the fossils are nested within Eucalyptus. These are the only illustrated Eucalyptus fossils that are definitively Eocene in age, and the only conclusively identified extant or fossil eucalypts naturally occurring outside of Australasia and adjacent Mindanao. Thus, these fossils indicate that the evolution of the eucalypt group is not constrained to a single region. Moreover, they strengthen the taxonomic connections between the Laguna del Hunco paleoflora and extant subtropical and tropical Australasia, one of the three major ecologic-geographic elements of the Laguna del Hunco paleoflora. The age and affinities of the fossils also indicate that Eucalyptus subgenus Symphyomyrtus is older than previously supposed. Paleoecological data indicate that the Patagonian Eucalyptus dominated volcanically disturbed areas adjacent to standing rainforest surrounding an Eocene caldera lake

    Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy

    Get PDF
    To discern the effect of the end-Permian (P-Tr) ecological crisis on land, interactions between plants and their insect herbivores were examined for four time intervals containing ten major floras from the Dolomites of northeastern Italy during a Permian-Triassic interval. These floras are: (i) the Kungurian Tregiovo Flora;(ii) the Wuchiapingian Bletterbach Flora;(iii) three Anisian floras;and (iv) five Ladinian floras. Derived plant-insect interactional data is based on 4242 plant specimens (1995 Permian, 2247 Triassic) allocated to 86 fossil taxa (32 Permian, 56 Triassic), representing lycophytes, sphenophytes, pteridophytes, pterido-sperms, ginkgophytes, cycadophytes and coniferophytes from 37 million-year interval (23 m. yr. Permian, 14 m. yr. Triassic). Major Kungurian herbivorized plants were unaffiliated taxa and pteridosperms;later during the Wuchiapingian cycadophytes were predominantly consumed. For the Anisian, pteridosperms and cycadophytes were preferentially consumed, and subordinately pteridophytes, lycophytes and conifers. Ladinian herbivores overwhelming targeted pteridosperms and subordinately cycadophytes and conifers. Throughout the interval the percentage of insect-damaged leaves in bulk floras, as a proportion of total leaves examined, varied from 3.6% for the Kungurian (N = 464 leaves), 1.95% for the Wuchiapingian (N = 1531), 11.65% for the pooled Anisian (N = 1324), to 10.72% for the pooled Ladinian (N = 923), documenting an overall herbivory rise. The percentage of generalized consumption, equivalent to external foliage feeding, consistently exceeded the level of specialized consumption from internal feeding. Generalized damage ranged from 73.6% (Kungurian) of all feeding damage, to 79% (Wuchiapingian), 65.5% (pooled Anisian) and 73.2% (pooled Ladinian). Generalized-to-specialized ratios show minimal change through the interval, although herbivore component community structure (herbivore species feeding on a single plant-host species) increasingly was partitioned from Wuchiapingian to Ladinian. The Paleozoic plant with the richest herbivore component community, the coniferophyte Pseudovoltzia liebeana, harbored four damage types (DTs), whereas its Triassic parallel, the pteridosperm Scytophyllum bergeri housed 11 DTs, almost four times that of P. liebeana. Although generalized DTs of P. liebeana were similar to S. bergeri, there was expansion of Triassic specialized feeding types, including leaf mining. Permian-Triassic generalized herbivory remained relatively constant, but specialized herbivores more finely partitioned plant- host tissues via new feeding modes, especially in the Anisian. Insect-damaged leaf percentages for Dolomites Kungurian and Wuchiapingian floras were similar to those of lower Permian, north-central Texas, but only one-third that of southeastern Brazil. Global herbivore patterns for Early Triassic plant-insect interactions remain unknown

    Permian plants from the Chutani Formation (Titicaca Group, Northern Altiplano of Bolivia): II. The morphogenus Glossopteris

    Get PDF
    Fossil plants belonging to the morphogenera Glossopteris, Pecopteris and Asterotheca were collected from the upper part of the Chutani Formation (Titicaca Group), near the town of San Pablo de Tiquina, on the southeastern shore of Lake Titicaca (northern Altiplano, Bolivia). This paper presents the first description of specimens of the morphogenus Glossopteris from Bolivia. The Bolivian specimens of Glossopteris consist of poorly-preserved impressions, although they present the diagnostic features of this morphogenus. They are fragments of leaves with secondary veins of taeniopterid-type, typical of glossopterids from Late Permian deposits of Gondwana. The only species of Pecopteris confirmed in the first part of this study, i.e. P. dolianitii Rösler and Rohn (see Vieira et al. 2004), was previously reported from the Late Permian beds of the Rio do Rasto and Estrada Nova formations in the Paraná Basin (southern Brazil). Therefore, a Late Permian age is proposed for the fossil plant-bearing beds of the Chutani Formation based on the analyzed assemblage. The phytogeographic implications of this new find are briefly analyzed.<br>Plantas fósseis, pertencentes aos morfo-gêneros Glossopteris, Pecopteris e Asterotheca, foram coletadas na porção superior da seção aflorante da Formação Chutani, próxima ao povoado de San Pablo de Tiquina, sudeste do lago Titicaca (Altiplano norte, Bolívia). Este trabalho apresenta a primeira descrição de espécimes do morfo-gênero Glossopteris provenientes da Bolívia. Os espécimes estudados de Glossopteris consistem em impressões foliares pobremente preservadas nas quais feições diagnósticas estão presentes. Os fragmentos foliares apresentam venação secundária do tipo teniopteróide, uma característica típica de glossopterídeas encontradas em depósitos do Permiano Superior do Gondwana. Por sua vez, a única espécie de Pecopteris confirmada para estes níveis da Formação Chutani, i.e. P. dolianitii Rohn and Rösler (ver Vieira et al. 2004), foi previamente assinalada para estratos do Permiano Superior da Bacia do Paraná (formações Estrada Nova e Rio do Rasto). Portanto, uma idade neopermiana é tentativamente proposta para os níveis da Formação Chutani que contém a associação estudada. As implicações fitogeográficas deste novo achado são brevemente analisadas

    The diversity of Australian Mesozoic bennettitopsid reproductive organs

    Get PDF
    Several dispersed reproductive organs of bennettitopsid gymnosperms are described and illustrated from Triassic to Cretaceous strata of Australia: Williamsonia eskensis sp. nov. (Middle Triassic), Williamsonia ipsvicensis sp. nov. (Upper Triassic), Williamsonia durikaiensis sp. nov. (Lower Jurassic), Williamsonia sp. (Lower Jurassic), Williamsonia rugosa sp. nov. (Middle Jurassic), Williamsonia gracilis sp. nov. (Lower Cretaceous), Cycadolepis ferrugineus sp. nov. (Lower Jurassic), Cycadolepis sp. (Lower Cretaceous), and Fredlindia moretonensis Shirley 1898 comb. nov. (Upper Triassic). Among these, W. eskensis appears to represent the oldest bennettitalean reproductive structure yet identified. Although global floras expressed less provincialism during the Mesozoic and many genera are cosmopolitan, Australian bennettopsid species appear to have been endemic based on the morphological characters of the reproductive structures. Bennettopsids have a stratigraphic range of around 210 million years in Australia and are widely and abundantly represented by leaf fossils, but only around 20 specimens of reproductive structures, of which half are attributed to Fredlindia, have been recovered from that continent’s geological archive. The extremely low representation of reproductive organs vis-à-vis foliage is interpreted to reflect a combination of physical disintegration of the seed-bearing units while attached to the host axis and, potentially, extensive vegetative reproduction in bennettopsids growing at high southern latitudes during the Mesozoic.Other funding from:National Science Foundation (project #1636625)German Research Council (DFG KR2125/3)Friends of the Swedish Museum of Natural History (Riksmusei Vänner, Stockholm)SYNTHESYS (AT-TAF 467)</p
    corecore