28 research outputs found

    Increasing the options for reducing adverse events: Results from a modified Delphi technique

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: The aim of this paper is to illustrate a simple method for increasing the range of possible options for reducing adverse events in Australian hospitals, which could have been, but was not, adopted in the wake of the landmark 1995 'Quality in Australian Health Care ' study, and to report the suggestions and the estimated lapse time before they would impact upon mortality and morbidity. Method: The study used a modified Delphi technique that first elicited options for reducing adverse events from an invited panel selected on the basis of their knowledge of the area of adverse events and quality assurance. Initial suggestions were collated and returned to them for reconsideration and comment. Results: Completed responses from both stages were obtained from 20 of those initially approached. Forty-one options for reducing AEs were identified with an average lapse time of 3.5 years. Hospital regulation had the least delay (2.4 years) and out of hospital information the greatest (6.4 years). Conclusion: Following identification of the magnitude of the problem of adverse events in the 'Quality in Australian Health Care ' study a more rapid and broad ranging response was possible than occurred. Apparently viable options for reducing adverse events and associated mortality and morbidity remain unexploited

    Promoting Patient Safety and Preventing Medical Error in Emergency Departments

    Full text link
    An estimated 108,000 people die each year from potentially preventable iatrogenic injury. One in 50 hospitalized patients experiences a preventable adverse event. Up to 3% of these injuries and events take place in emergency departments. With long and detailed training, morbidity and mortality conferences, and an emphasis on practitioner responsibility, medicine has traditionally faced the challenges of medical error and patient safety through an approach focused almost exclusively on individual practitioners. Yet no matter how well trained and how careful health care providers are, individuals will make mistakes because they are human. In general medicine, the study of adverse drug events has led the way to new methods of error detection and error prevention. A combination of chart reviews, incident logs, observation, and peer solicitation has provided a quantitative tool to demonstrate the effectiveness of interventions such as computer order entry and pharmacist order review. In emergency medicine (EM), error detection has focused on subjects of high liability: missed myocardial infarctions, missed appendicitis, and misreading of radiographs. Some system-level efforts in error prevention have focused on teamwork, on strengthening communication between pharmacists and emergency physicians, on automating drug dosing and distribution, and on rationalizing shifts. This article reviews the definitions, detection, and presentation of error in medicine and EM. Based on review of the current literature, recommendations are offered to enhance the likelihood of reduction of error in EM practice.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74930/1/j.1553-2712.2000.tb00466.x.pd

    Bright light therapy versus physical exercise to prevent co-morbid depression and obesity in adolescents and young adults with attention-deficit/hyperactivity disorder: study protocol for a randomized controlled trial

    Get PDF
    Background: The risk for major depression and obesity is increased in adolescents and adults with attention-deficit / hyperactivity disorder (ADHD) and adolescent ADHD predicts adult depression and obesity. Non-pharmacological interventions to treat and prevent these co-morbidities are urgently needed. Bright light therapy (BLT) improves day– night rhythm and is an emerging therapy for major depression. Exercise intervention (EI) reduces obesity and improves depressive symptoms. To date, no randomized controlled trial (RCT) has been performed to establish feasibility and efficacy of these interventions targeting the prevention of co-morbid depression and obesity in ADHD. We hypothesize that the two manualized interventions in combination with mobile health-based monitoring and reinforcement will result in less depressive symptoms and obesity compared to treatment as usual in adolescents and young adults with ADHD. Methods: This trial is a prospective, pilot phase-IIa, parallel-group RCT with three arms (two add-on treatment groups [BLT, EI] and one treatment as usual [TAU] control group). The primary outcome variable is change in the Inventory of Depressive Symptomatology total score (observer-blinded assessment) between baseline and ten weeks of intervention. This variable is analyzed with a mixed model for repeated measures approach investigating the treatment effect with respect to all three groups. A total of 330 participants with ADHD, aged 14 – < 30 years, will be screened at the four study centers. To establish effect sizes, the sample size was planned at the liberal significance level of α = 0.10 (two-sided) and the power of 1-β = 80% in order to find medium effects. Secondary outcomes measures including change in obesity, ADHD symptoms, general psychopathology, health-related quality of life, neurocognitive function, chronotype, and physical fitness are explored after the end of the intervention and at the 12-week follow-up. This is the first pilot RCT on the use of BLT and EI in combination with mobile health-based monitoring and reinforcement targeting the prevention of co-morbid depression and obesity in adolescents and young adults with ADHD. If at least medium effects can be established with regard to the prevention of depressive symptoms and obesity, a larger scale confirmatory phase-III trial may be warranted.The trial is funded by the EU Framework Programme for Research and Innovation, Horizon 2020 (Project no. 667302). Funding period: January 2016–December 2020. This funding source had no role in the design of this study and will not have any role during its execution, analyses, interpretation of the data, or decision to submit results. Some local funds additionally contributed to carry out this study, especially for the preparation of the interventions: FBO research activity is by the Spanish Ministry of Economy and Competitiveness – MINECO (RYC-2011-09011) and by the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Unit of Excellence on Exercise and Health (UCEES)
    corecore