17 research outputs found

    Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association

    Get PDF
    The HLA-G gene displays several peculiarities that are distinct from those of classical HLA class I genes. The unique structure of the HLA-G molecule permits a restricted peptide presentation and allows the modulation of the cells of the immune system. Although polymorphic sites may potentially influence all biological functions of HLA-G, those present at the promoter and 3′ untranslated regions have been particularly studied in experimental and pathological conditions. The relatively low polymorphism observed in the MHC-G coding region both in humans and apes may represent a strong selective pressure for invariance, whereas, in regulatory regions several lines of evidence support the role of balancing selection. Since HLA-G has immunomodulatory properties, the understanding of gene regulation and the role of polymorphic sites on gene function may permit an individualized approach for the future use of HLA-G for therapeutic purposes

    Tannic extract potential as natural wood preservative of Acacia mearnsii

    No full text
    <div><p>ABSTRACT High toxicity of the preservatives most frequently used in wood treatment and the resulting risks of handling pose a threat to small producers and to the environment. In an attempt to mitigate these problems, the present study was conducted with the objective of evaluating the preservative effect of tannic extract on biodeterioration of Acacia mearnsii wood. For this purpose, untreated and preserved specimens, some with tannin extract and some with a preservative mixture based on CCB (Chromated Copper Borate), were submitted to accelerated rotting trials with the fungus that causes white rot (Pycnoporus sanguineus) for 16 weeks. The evaluations were made with a basis on weight loss and chemical components analysis, and they showed that the natural resistance of Acacia wood is moderate when exposed to the white rot fungus. The tannin concentrations showed similar effects to those of the CBB mixture in all evaluations, i.e., they significantly increased the biological resistance of the material, which started to be classified as very resistant to the fungus. Overall, the results suggest that tannin can be considered as a potential natural preservative product.</p></div

    HLA polymorphisms as incidence factor in the progression to end-stage renal disease in Brazilian patients awaiting kidney transplant

    No full text
    Chronic renal failure (CRF) leads in the majority of instances to end-stage renal disease (ESRD) requiring renal replacement therapy. Age, gender, genetics, race, hypertension, and smoking among others are factors associated with ESRD. Our interest was to evaluate the possible associations of class I and II HLA antigens with ESRD renal disease independent of other factors, among patients with CRF, having various diagnoses in the Brazilian population of the Sao Paulo state. So 21 HLA-A, 31 HLA-B, and 13 HLA-DR were detected in 105 patients who were compared with 160 healthy controls of both sexes who were not related to the patients evaluated until 2005. We calculated allelic frequencies, haplotypes frequencies, etiological fractions (EF), preventive fractions, and relative risks (RR). We compared demographic data of patients and controls. The antigens positively associated with ESRD were: HLA-A78 (RR = 30.31 and EF = 0.96) and HLA-DR11 (RR = 18.87 and EF = 0.65). The antigens HLAB14 (RR = 29.90 and EF = 0.75) was present at a significantly lower frequency among patients compared with controls. In contrast, no haplotype frequency showed statically significant associations. Further molecular studies may clarify types and subtypes of alleles involved with ESRD progression

    Association of Interferon-gamma gene polymorphism (+874 T/A) with systemic sclerosis

    No full text
    Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq

    Interferon-gamma+874 Polymorphism in the First Intron of the Human Interferon-gamma Gene and Kidney Allograft Outcome

    No full text
    Background. Despite advances in immunosuppressive therapy in the past decade, allograft rejection remains an important cause of kidney graft failure. Cytokines play a major role in the inflammatory and immune responses that mediate allograft outcomes. Several studies have shown that the production of cytokines varies among individuals. These variations are determined by genetic polymorphisms, most commonly within the regulatory region of cytokine genes. The aim of the present study was to assess the effect of allelic variation on acute rejection episodes (ARE) or chronic allograft nephropathy (CAN) after kidney transplantation. Methods. To determine a possible correlation between the interferon (INF)-gamma +874 polymorphism and kidney allograft outcome, we isolated genomic DNA from 74 patients who underwent isolated kidney allografts and were classified into 2 groups-a rejection and a nonrejection group-for comparison with a control group of 163 healthy subjects. Results. We genotyped INF-gamma +874 polymorphisms in all groups. The transplant group showed a significantly increased homozygous genotype T/T (P = .0118) compared with healthy controls. Similarly, considering only patients with CAN, the homozygous genotype T/T (P = .0067) was significantly increased compared with the healthy controls. The rejection group indicated a significant increased homozygous genotype Tic compared with the control group (P = .0061). Conclusion. Homozygous genotype T/T was associated with increased levels of INF-gamma and greater numbers among the rejection and CAN cohorts

    Patients with systemic sclerosis present increased DNA damage differentially associated with DNA repair gene polymorphisms

    No full text
    Patients with systemic sclerosis (SSc) exhibit increased toxicity when exposed to genotoxic agents. In our study, we evaluated DNA damage and polymorphic sites in 2 DNA repair genes (XRCC1 Arg399Gln and XRCC4 Ile401Thr) in patients with SSc. A total of 177 patients were studied for DNA repair gene polymorphisms. Fifty-six of them were also evaluated for DNA damage in peripheral blood cells using the comet assay. Compared to controls, the patients as a whole or stratified into major clinical variants (limited or diffuse skin involvement), irrespective of the underlying treatment schedule, exhibited increased DNA damage. XRCC1 (rs: 25487) and XRCC4 (rs: 28360135) allele and genotype frequencies observed in patients with SSc were not significantly different from those observed in controls; however, the XRCC1 Arg399Gln allele was associated with increased DNA damage only in healthy controls and the XRCC4 Ile401Thr allele was associated with increased DNA damage in both patients and controls. Further, the XRCC1 Arg399Gln allele was associated with the presence of antinuclear antibody and anticentromere antibody. No association was observed between these DNA repair gene polymorphic sites and clinical features of patients with SSc. These results corroborate the presence of genomic instability in SSc peripheral blood cells, as evaluated by increased DNA damage, and show that polymorphic sites of the XRCC1 and XRCC4 DNA repair genes may differentially influence DNA damage and the development of auto-antibodies413458465FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPES

    HLA-G Expression in the Skin of Patients with Systemic Sclerosis

    No full text
    Objective. To determine HLA-G expression in skin biopsies from patients with systemic sclerosis (SSc), and its association with epidemiological, clinical, and laboratory variables and survival. Methods. Paraffin-embedded skin biopsies obtained from 21 SSc patients (14 limited SSc, 7 diffuse SSc) and from 28 healthy controls were studied. HLA-G expression was evaluated by immunohistochemistry. Results. HLA-G molecules were detected in 57% of skin biopsies from patients with SSc (9 from limited SSc, 3 from diffuse SSc), whereas no control sample expressed HLA-G (p = 0.000004). In patients, HLA-G molecules were consistently observed within epidermal and some dermal cells. HLA-G expression was associated with a lower frequency of vascular cutaneous ulcers (p = 0.0004), telangiectasias (p = 0.008), and inflammatory polyarthralgia (p = 0.02). After a 15-year followup, SSc patients who exhibited HLA-G survived longer than patients who did not. Conclusion. HLA-G is expressed in skin biopsies from patients with SSc, and this is associated with a better disease prognosis. This Suggests a Modulatory role of HLA-G in SSc, as observed in other skin disorders. (First Release April 15 2009; J Rheumatol 2009;36:1230-4; doi:10.3899/jrheum.080552)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq

    Patients With Systemic Sclerosis Present Increased Dna Damage Differentially Associated With Dna Repair Gene Polymorphisms.

    No full text
    Patients with systemic sclerosis (SSc) exhibit increased toxicity when exposed to genotoxic agents. In our study, we evaluated DNA damage and polymorphic sites in 2 DNA repair genes (XRCC1 Arg399Gln and XRCC4 Ile401Thr) in patients with SSc. A total of 177 patients were studied for DNA repair gene polymorphisms. Fifty-six of them were also evaluated for DNA damage in peripheral blood cells using the comet assay. Compared to controls, the patients as a whole or stratified into major clinical variants (limited or diffuse skin involvement), irrespective of the underlying treatment schedule, exhibited increased DNA damage. XRCC1 (rs: 25487) and XRCC4 (rs: 28360135) allele and genotype frequencies observed in patients with SSc were not significantly different from those observed in controls; however, the XRCC1 Arg399Gln allele was associated with increased DNA damage only in healthy controls and the XRCC4 Ile401Thr allele was associated with increased DNA damage in both patients and controls. Further, the XRCC1 Arg399Gln allele was associated with the presence of antinuclear antibody and anticentromere antibody. No association was observed between these DNA repair gene polymorphic sites and clinical features of patients with SSc. These results corroborate the presence of genomic instability in SSc peripheral blood cells, as evaluated by increased DNA damage, and show that polymorphic sites of the XRCC1 and XRCC4 DNA repair genes may differentially influence DNA damage and the development of autoantibodies.41458-6
    corecore