62 research outputs found

    Wendy Larson. Women and writing in modem China

    Full text link
    This article reviews the book Women and Writing in Modern China written by Wendy Larson

    Solid lipid dispersion of calcitriol with enhanced dissolution and stability

    Get PDF
    AbstractSolid dispersion of calcitriol with lipophilic surfactants and triglycerides was developed by melt-mixing method to modify the release and enhance stability of the drug. The solid dispersions were characterized by differential scanning calorimetry (DSC), hot stage polarized optical microscopy (HSPM), infrared spectroscopy (FTIR) and stability studies. The solid dispersion significantly enhanced the stability of calcitriol, which could be attributed to the high antioxidant activity of the solid lipid dispersion. The rapid dissolution rate from the solid dispersion was attributed to the amorphous or solid solution state of drug with improved specific surface area and wettability than the drug crystals. Therefore, solid dispersion of calcitriol with d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) offers a good approach to modify the release and enhance stability of calcitriol. The influence of lipophilic solid dispersion on drug bioavailability needs further investigation

    Optical sensors using chaotic correlation fiber loop ring down

    Get PDF
    We have proposed a novel optical sensor scheme based on chaotic correlation fiber loop ring down (CCFLRD). In contrast to the well-known FLRD spectroscopy, where pulsed laser is injected to fiber loop and ring down time is measured, the proposed CCFLRD uses a chaotic laser to drive a fiber loop and measures autocorrelation coefficient ring down time of chaotic laser. The fundamental difference enables us to avoid using long fiber loop as required in pulsed FLRD, and thus generates higher sensitivity. A strain sensor has been developed to validate the CCFLRD concept. Theoretical and experiment results demonstrate that the proposed method is able to enhance sensitivity by more than two orders of magnitude comparing to the existing FLRD method. We believe the proposed method could find great potential applications for chemical, medical, and physical sensing

    Photoactivation of Cu Centers in Metal-Organic Frameworks for Selective CO2 Conversion to Ethanol.

    Get PDF
    CO2 hydrogenation to ethanol is of practical importance but poses a significant challenge due to the need of forming one C-C bond while keeping one C-O bond intact. CuI centers could selectively catalyze CO2-to-ethanol conversion, but the CuI catalytic sites were unstable under reaction conditions. Here we report the use of low-intensity light to generate CuI species in the cavities of a metal-organic framework (MOF) for catalytic CO2 hydrogenation to ethanol. X-ray photoelectron and transient absorption spectroscopies indicate the generation of CuI species via single-electron transfer from photoexcited [Ru(bpy)3]2+-based ligands on the MOF to CuII centers in the cavities and from Cu0 centers to the photoexcited [Ru(bpy)3]2+-based ligands. Upon light activation, this Cu-Ru-MOF hybrid selectively hydrogenates CO2 to EtOH with an activity of 9650 μmol gCu-1 h-1 under 2 MPa of H2/CO2 = 3:1 at 150 °C. Low-intensity light thus generates and stabilizes CuI species for sustained EtOH production

    The association between dietary inflammatory index and cognitive function in adults with/without chronic kidney disease

    Get PDF
    Background and aimsCognitive impairment (CI) is a prevalent condition in patients with chronic kidney disease (CKD), who face an elevated risk of developing cognitive decline. The fundamental mechanism underlying CI is linked to chronic inflammation, which can be gauged by the Dietary Inflammatory Index (DII). The DII is categorized into anti-inflammatory diets with lower scores and pro-inflammatory diets with higher scores. Specifically, pro-inflammatory diets may contribute to chronic inflammation. However, the correlation between the inflammatory potential of diet and cognitive function in patients with CKD has not been explored. This study aims to investigate the connection between the inflammatory potential of diet and cognitive function in individuals with or without chronic kidney disease.MethodsData from the 2011–2012 and 2013–2014 National Health and Nutrition Examination Survey (NHANES) were utilized. Participants under the age of 60 or lacking DII, CI, CKD, and other essential data were excluded. DII was computed based on a 24-h dietary recall interview for each participant. Cognitive performance was evaluated using three cognitive tests: the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) test, the Animal Fluency Test (AFT), and the Digital Symbol Substitution Test (DSST). Logistic regression analysis and subgroup analysis were conducted to assess the independent relationship between DII score and CI in the CKD and non-CKD populations.ResultsThe study included a total of 2069 subjects, with CI prevalence ranging from 21.4 to 23.5%. Multiple regression models showed that after adjusting for all covariates of the three cognitive function tests, higher DII scores were significantly associated with increased risk of CI (CERAD OR = 1.18, 95% CI: 1.1 ~ 1.26, AFT OR = 1.15, 95% CI: 1.08 ~ 1.23, DSST OR = 1.19, 95% CI: 1.11 ~ 1.28). Subgroup analysis indicated that the effect of DII score on CI remained consistent in all subgroups (p > 0.05).ConclusionHigher DII scores were associated with an increased risk of cognitive impairment in people with or without CKD, suggesting that consuming a pro-inflammatory diet may contribute to the impairment of the cognitive function

    The genome and gene editing system of sea barleygrass provide a novel platform for cereal domestication and stress tolerance studies

    Get PDF
    The tribe Triticeae provides important staple cereal crops and contains elite wild species with wide genetic diversity and high tolerance to abiotic stresses. Sea barleygrass (Hordeum marinum Huds.), a wild Triticeae species, thrives in saline marshlands and is well known for its high tolerance to salinity and waterlogging. Here, a 3.82-Gb high-quality reference genome of sea barleygrass is assembled de novo, with 3.69 Gb (96.8%) of its sequences anchored onto seven chromosomes. In total, 41 045 high-confidence (HC) genes are annotated by homology, de novo prediction, and transcriptome analysis. Phylogenetics, non-synonymous/synonymous mutation ratios (Ka/Ks), and transcriptomic and functional analyses provide genetic evidence for the divergence in morphology and salt tolerance among sea barleygrass, barley, and wheat. The large variation in post-domestication genes (e.g. IPA1 and MOC1) may cause interspecies differences in plant morphology. The extremely high salt tolerance of sea barleygrass is mainly attributed to low Na+ uptake and root-to-shoot translocation, which are mainly controlled by SOS1, HKT, and NHX transporters. Agrobacterium-mediated transformation and CRISPR/Cas9-mediated gene editing systems were developed for sea barleygrass to promote its utilization for exploration and functional studies of hub genes and for the genetic improvement of cereal crops
    • …
    corecore