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Abstract—A novel refractive index sensing using the tapered 

single mode fiber (TSMF) is proposed based on the chaotic 

correlation fiber loop ring down system (FLRDs). A chaotic fiber 

laser is used to drive the fiber loop cavity. The performance of the 

proposed TSMF chaotic correlation FLRDs refractive index 

sensing was demonstrated by measuring the ring down time of the 

peaks of correlation coefficient of the sensing system at different 

refractive index. The sensing demonstrates a good stability and 

repeatability. The influence of the change in fiber loop length on 

the sensing system was also investigated. The results show that the 

sensitivity of chaotic correlation FLRDs increases with the 

decrease of the loop length and the change of the loop length has 

little effect on the detection limit (DL) of the system. The DL of 

10
 -4

 RIU were achieved. Compared with the pulsed FLRDs, the 

chaotic correlation FLRDs significantly simplify the light source 

of sensing system and eliminate the trade-off problem between the 

length of fiber loop cavity and the light source, and makes fiber 

loop length more flexible.  

 

Index Terms—Chaotic fiber laser, fiber loop ring down, 

refractive index sensing. 

 

I. INTRODUCTION 

EFRACTIVE index is one of the fundamental properties of a 

material. The measurement of refractive index has 

important applications in chemical [1], biological [2], 

environmental monitoring [3], [4] and food safety. In recent 

years, the evanescent field (EF) based on refractive index 

sensors have attracted great interests in the measurement for 

refractive index owing to the easy fabrication and small size [5]. 

The EF phenomenon results from the total internal reflection 

of light at the interface of two media. When the light propagates 

in the fiber, the EF phenomenon only exists in a small range at 

the interface between the core and the cladding of the fiber, so 

the measurement must be taken to make the EF interact with the 

solution outside the cladding. The chemical etching [6], side 

polishing [7] and drawing a taper [8] are the commonly used 

methods for exposing EF of the fiber. It is well known that the 

intensity and spectrum would be changed when light pass 

through the EF. H.A. Rahman et al. proposed an intensity 

modulated tapered multimode plastic fiber optic sensor for 

salinity detection [9]. Pengfei Wang et al. demonstrated an 

enhanced evanescent field fiber refractometer using a tapered 

multimode fiber sandwiched between two single mode fibers 

based on the wavelength shift of the transmission spectrum [10]. 

Compared with measuring spectrum and intensity, FLRDs have 

great advantages, such as insensitivity to source fluctuations, 

fast response, the ring down enhanced detection sensitivity and 

low cost [11].  

FLRDs, which was put forward by Stewart et al. in 2001 [12], 

where a coupler replaces the high reflectivity mirror, is a variant 

of cavity ring down spectroscopy (CRDs) [13]. In 2004, the 

feasibility of combining EF sensing mechanism with FLRDs 

was proved by Tarsa et al. [14]. In 2010, Chuji Wang et al. 

proposed a FLRDs glucose sensor using refractive index 

difference EF attenuation effect as a sensing mechanism [15]. 

In 2019, Panpan Niu et al. proposed a fiber optic refractive 

index sensor based on FLRDs with an S fiber taper structure 

[16]. 

For the pulsed FLRDs, the device for generating the pulsed 

laser is generally composed of a light source, an intensity 

modulator and a signal generator [17], [18]. Optical time-

domain reflectometer (OTDR) was proposed as a FLRDs light 

source [19], [20]. It needs to consider the trade-off problem 

between the length of fiber loop and the width and frequency of 

the pulse [21]. The frequency must ensure that there are only 

one group pulses in the fiber loop cavity. Furthermore, the ring 

down time is also greatly affected by pulse width, the narrower 

pulse width is achieved the longer ring down time [20], [22]. 

To overcome the obstacle, the chaotic correlation FLRDs was 

proposed by our group [23].  

The chaotic correlation FLRDs is composed of a chaotic laser, 

two couplers and the sensor, which is similar to the traditional 

FLRDs [24]. Compared with the pulsed FLRDs, the chaotic 

correlation FLRDs significantly simplify the light source of 

sensing system and eliminate the trade-off problem between the 

length of fiber loop cavity and the light source, and makes fiber 

loop length more flexible.  

The evanescent field sensing with chaotic correlation FLRDs 

detection scheme is achieved for a novel refractive index 

sensing using TSMF. The refractive index characteristics of 

TSMF chaotic correlation FLRDs are investigated in the time 

domain by detecting the ring down time of the peaks of 
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autocorrelation coefficient at different solutions. The paper is 

organized as follows. The experimental setup of the TSMF 

chaotic correlation FLRDs is described in the next section. The 

experimental results and discussions are analyzed in Section Ⅲ. 

Finally, the conclusion is presented in the Section Ⅳ.  

II. EXPERIMENTAL SETUP  

The schematic diagram of TSMF chaotic correlation FLRDs 

sensing is depicted in Fig. 1. The two 95:5 couplers, a TSMF 

and a section of the SMF were spliced together to form a fiber 

loop cavity. The light from chaotic fiber laser is coupled into 

the fiber loop cavity via coupler1 and travels inside the fiber 

loop cavity for many round trips. The decayed chaotic laser is 

exported out via coupler2 and is detected by a photoelectric 

detector (PD). The output of the PD is collected by an 

oscilloscope (OSC).  

To alter the refractive index around TSMF, TSMF was 

immersed in sodium chloride solutions with different 

concentrations. Sodium chloride solution was prepared in 

advance. The refractive indices are 1.3347, 1.3400, 1.3453, 

1.3505, 1.3558, 1.3612, 1.3666, 1.3721, and the concentration 

of the sodium chloride can be found in [25]. 

The sensor was made by drawing a section of SMF to make 

the EF interact with the solution outside the cladding. TSMF is 

composed of a waist region and two transition regions and has 

a waist diameter of 17 μm and a length of 8 mm. Fig. 2. shows 

the waist region of TSMF observed by the electron microscope. 

When TSMF is immersed in the liquid with lower refractive 

index, there is a new step waveguide structure formed by TSMF 

and the solution. Different refractive indices of liquids have 

different effects on light passing through EF. 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS  

The wavelength and power of chaotic fiber laser was tuned 

to 1550 nm, 36.12 mW, respectively. The spectrum, time series, 

and autocorrelation curve of the chaotic fiber laser were shown 

in Figs. 3(a)-3(c). Fig. 3(a) shows that the central wavelength 

of chaotic laser is 1550nm with the full width at half maximum 

(FWHM) of 0.25 nm. Fig. 3(b) and 3(c) demonstrate that the 

chaotic laser has a noise-like time series and the autocorrelation 

curve of chaotic laser has the properties of delta-like function 

of which the FWHM is 0.8ns, respectively. 

The chaotic correlation FLRDs utilizes chaotic fiber laser to 

achieve sensing by the detection of the ring down time of the 

peaks of autocorrelation coefficient. In this experiment, τR  is 

the ring down time when the TSMF is immersed in distilled 

water (n=1.318), and  τR is given by [23]: 

                                
0

c r
R

n L t

cA A
 = = ,                                  (1) 

where L, c, nc, A, tr are fiber loop length, the velocity of light in 

vacuum, the refractive index of fiber, total transmission loss of 

the light in each round trip, and the round-trip time of the light, 

respectively. TSMF was immersed in the distilled water, and 

the autocorrelation curve of the decayed chaotic laser exported 

out via coupler2 is shown in Fig. 3 (d). As can be seen from the 

Fig. 3 (d), the autocorrelation curve of the decayed chaotic laser 

is a series of attenuation peaks. The time interval between two 

adjacent spikes of 38.2 ns demonstrates that the length of fiber 

loop cavity in this experiment is 7.85 m. τR0  is 88.68 ns 

obtained by exponentially fitting the chaotic autocorrelation 

coefficient peaks. 

When TSMF was immersed in sodium chloride solutions 

with different concentrations, the additional loss B is introduced 

to fiber loop, which causes a change in the ring down time from 

τR0 to τR. 

Where τR is given by: 
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The basic principle of the proposed TSMF chaotic 

correlation FLRDs refractive index sensor is expressed by (3). 

Additional loss B can be obtained by measuring the ring down 

time τR and τR0 and B is essentially determined by the refractive 

index n around TSMF [26], [27]. The additional loss B versus 

refractive index n curves follow a linear relationship when the 

refractive index n is larger than 1.33. The relationship between 

B and refractive index n in the range of 1.3347 to 1.3721 can be 

expressed as: 

B kn b= + ,                                 (4) 

where k and b are constants related to TSMF.  Fig. 2. Optical microscope images of the TSMF. 

 

Fig. 1. Schematic diagram of the TSMF chaotic correlation FLRDs refractive 

index sensing system. 
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From (3) and (4), we have： 
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Equation (5) shows that (1⁄τR-1⁄τR0)  is proportional to the 

refractive index n. The sensing can be achieved by establishing 

the relationship between (1⁄τR-1⁄τR0)  and n. Equation (6) 

indicates that the sensitivity p1 of the sensing system can be 

improved by decreasing tr.  

TSMF was immersed in sodium chloride solutions with 

different concentrations, and the ring down time τR  was 

measured in each case. The TSMF was rinsed with water and 

the next solution to be tested. Fig. 4 shows the autocorrelation 

coefficient evolution under different refractive indices and also 

illustrates the fast measurement in chaotic correlation FRLDs. 

Fig. 5 shows that (1⁄τR-1⁄τR0) has an excellent linear relationship 

with the refractive index n, and R2 is as high as 0.997. And 

(1⁄τR-1⁄τR0)  increases significantly with the increase of 

refractive index n. The proposed refractive index sensing based 

on TSMF chaotic correlation FRLDs provides a high sensitivity 

of 0.045 ns-1 RIU -1 in range from 1.3347 to 1.3721. Equation 

(5) has been experimentally validated via determining the 

relationships between (1⁄τR-1⁄τR0) and the refractive index n. 

 In order to investigating the stability and repeatability of the 

TSMF chaotic correlation FRLDs, TSMF was immersed in the 

sodium chloride solution with a refractive index of 1.3721. The 

output chaotic laser was collected by PD and oscilloscope every 

five minutes within fifty minutes, grouped into five. It is shown 

in Fig. 6 that the maximum standard deviation of the ring down 

time in five groups is 2.35×10 -5  ns -1. The refractive index 

sensing based on TSMF chaotic correlation FLRDs has a good 

stability and repeatability. The DL of 5.16 ×10 -4  RIU is 

experimentally achieved.  

The same experiment was used to study the variation of the 

parameters of the sensing system by changing the length of the 

Fig. 3. (a) Spectrum, (b) Time series, (c) Autocorrelation curve, and (d) 

Autocorrelation curve of the decayed chaotic laser. 

(a) 

(c) (d) 

(b) 
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fiber loop cavity with the same chaotic fiber laser. The results 

are shown in Fig. 7 and Table I. The sensitivity p1 are increased 

with the decrease of the loop length, which is consistent with 

(6). The sensitivity of the ring length of 4.69 m is about 23 times 

larger than that of 115.10 m.  

The same TSMF was used in the five sensing systems. 

According to (4), k and b should be the same in value. k and b 

can be calculated by (6) and (7). k and b remain basically 

unchanged known from Table I, which is consistent with that 

described in (4).  

The experiments were performed with the same sensor 

element in the same environment. The loop length has little 

effect on the DL of the system. Compared with the pulsed 

FLRDs, the chaotic correlation FLRDs significantly simplify 

the light source of sensing system and eliminate the trade-off 

problem between the length of fiber loop cavity and the light 

source, and makes fiber loop length more flexible.  

IV. CONCLUSION 

A refractive index sensing based on the TSMF sensor and 

chaotic correlation FLRDs is proposed. The sensing 

demonstrates a good stability and repeatability. The results 

show that the sensitivity of the sensing system can be improved 

by decreasing the loop length. The change of the loop length 

has little effect on the DL. Compared with the pulsed FLRDs, 

the chaotic correlation FLRDs significantly simplify the light 

TABLE I 
COMPARISON OF PARAMETERS FOR DIFFERENT LOOPS 

Length of the cavity (L) (m) 4.69 6.29 7.85 14.56 115.10 

tr (ns) 22.8 30.6 38.2 70.8 560 

k 1.88 1.72 1.74 1.60 1.96 

b 2.64 2.14 2.29 2.29 2.49 

DL (RIU) 5.19×10-4 6.53×10-4 5.16×10-4 4.29×10-4 3.89×10-4 

 

Fig. 4. Autocorrelation coefficient evolution under different refractive indies. 
 

Fig. 5. The relationship between refractive index and (1⁄τR-1⁄τR0). 

. 

Fig. 6. The repeatability and stability of the sensing system. 

Fig. 7. Comparison of sensitivity of different loops. 
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source of sensing system and eliminate the trade-off problem 

between the length of fiber loop cavity and the light source. The 

DL of this system can be drastically improved by selecting a 

sensor element with high sensitivity and low loss or applying 

loss compensation to chaotic correlation FLRDs. Such the 

simple and low-cost sensing based on the chaotic correlation 

FLRDs has great potential applications in the medical 

pharmaceuticals, industrial fluids, photochemical plastics and 

food industry.  
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