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Abstract: In this paper, we describe a novel temperature sensing system based on chaotic 

correlation fiber loop ring down technique. A fiber Bragg grating is introduced into the fiber loop 

cavity. The effect of temperature on the central wavelength of fiber Bragg grating is characterized by 

the ring down time of the autocorrelation coefficient of chaotic laser in the fiber loop cavity. The 

relationship between the autocorrelation coefficient ring down time of the chaotic laser and wavelength 

shifting of the fiber Bragg gratings induced by temperature is theoretically and experimentally analyzed. 

The sensitivity of 3.52ns/℃ is achieved in the proposed temperature sensing system with fiber cavity 

length of 6.05m. We also study the relationship between temperature and central wavelength of fiber 

Bragg grating by chaotic correlation fiber loop ring down system and receive the temperature 

sensitivity of 0.01nm/℃ of the FBG. This sensing method is not only simple and low cost, but also has 

the great potential applications for various industry and agriculture. 
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1. Introduction

Temperature is one of the fundamental thermodynamic properties [1]. Temperature measurement 

is widely applied in various industries and agriculture, which is related to production safety, product 

quality, and service life of equipment [2, 3]. It is very important to measure the temperature accurately 

and real timely. The temperature sensing device in the present application is mainly electronic sensors, 

such as thermocouple and thermistors, which transforms temperature into electrical signals. The 

performances of electronic sensors are disturbed in high voltage and intense electromagnetic field [4]. 

With the development of optical fiber and laser technology, optical fiber sensors has emerged due to 

the electrical insulation of fiber itself and the inherent advantage of broadband. In recent years a variety 

of optical fiber temperature sensors have been proposed [5], such as distributed-temperature sensor [6, 

7], optical fiber fluorescence temperature sensor [8, 9], reflective optical fiber temperature sensor [10, 

11] and interferometric fiber temperature sensor [12, 13].   

 Fiber Bragg gratings (FBG) are excellent fiber optic sensing elements, and many physical 

parameters can be measured through it [14], such as temperature [15, 16], strain [17, 18], refractivity 

[19, 20], and magnetic field [21, 22]. FBGs are integrated into the light guiding core of the fiber. The 

wavelength encoded characteristic of FBG eliminates the problems of amplitude or intensity variations 

that
 
plague many other types of fiber sensors.

 
The FBG as fiber temperature sensing head occurs 

principally through the effect on the index of refraction [23]. At the present, the FBG-based 

temperature sensors are widely applied by measuring the shifts of the Bragg wavelength with change of 

temperature [24], and the demodulation is achieved in frequency domain. A new optical fiber sensor—

fiber loop ring down (FLRD) sensor has been developed [25, 26]. FBG is introduced into fiber loop 

cavity to convert the measurement from wavelength change into the variation of ring down time, and 

the approach of demodulation is changed from frequency domain to time domain.

Fiber loop ring down system which consists of two optical couplers measures the ring down time 

of intensity of light in the fiber loop so that it can effectively minimize the impact of fluctuation of 

intensity of the injected pulse [27, 28]. The ring down time is both independent of excitation intensity, 

resulting in lower susceptibility to laser noise, and immune from external loss contributions, further 

improving sensitivity [29]. However, the fiber loop ring down sensing technology use the pulse laser as 

injected light [30.31], it is necessary to consider the contradiction between the length of fiber loop and 



the width and frequency of pulse for signal crosstalk [32], consequently the fiber cavity length is 

usually hundreds of meters , while the longer length of fiber loop can reduce sensing sensitivity of the 

fiber loop ring down sensing system. 

Chaotic laser has very broad bandwidth, high frequency and correlation properties due to its 

intrinsic randomness and has many great applications for fiber fault detection [33, 34], sensing [35, 36]. 

In this article, we investigate the fiber loop ring down temperature sensor based on the chaotic laser. 

The FBG as the sensor unit is incorporated into the fiber loop cavity and the autocorrelation coefficient 

ring down time of chaotic laser is utilized as sensing parameter. It allows shorter length of fiber loop 

owing to the extremely narrow bandwidth of autocorrelation curve [37]. The experimental scheme and 

principle of the fiber loop ring down temperature sensing system based on chaotic laser is described in 

section 2, followed by the experimental results and discussions which are given in section 3. Finally, 

the conclusion is presented in the section 4.   

               Fig.1.Schematic diagram of the FLRD temperature sensing system 

2. Experimental setup and principle 

     The schematic diagram of the fiber loop ring down temperature sensing system based on 

chaotic laser is shown in Fig.1. The two standard 2x1 95:5 optical fiber couplers (coupler1 and 

coupler2), an isolator (ISO) and a FBG are connected to form the fiber loop cavity. The ISO ensures 

the unidirectional propagation of light. The FBG is used as the sensing head and the central wavelength 

of FBG is 1549.95nm with the quoted reflectivity of 12% and the FWHM of 0.25nm. The light from 

chaotic fiber laser is injected into the fiber loop cavity via 5% port of coupler1 and circulates in fiber 

loop cavity. The decayed light is coupled out of the fiber loop by 5% port of coupler2 and is detected 

by a photoelectric detector (PD). The output of the PD is measured by an oscilloscope (OSC).



     In the experiment, the output power of chaotic fiber laser is 47mW. Fig.2 is the output 

characteristics of the wavelength tunable chaotic fiber laser. The time series of the chaotic fiber laser is 

presented in Fig.2 (a) and it shows that the chaotic laser has a noise-like time series. The spectrum of 

chaotic laser is shown in Fig.2 (b) and the central wavelength is 1550.21nm with the full width at half 

maximum (FWHM) of 0.25nm. Fig.2(c) depicts the autocorrelation curve of the time series of chaotic 

laser and shows that the autocorrelation curve of chaotic laser has the properties of delta-like-function 

and the FWHM of ~0.8ns. The autocorrelation curve of the decayed light of the output of 5% port of 

coupler2 is shown in Fig.2 (d). Multi-peaks are resulted from the multi-propagating and the 

transmission time delay of chaotic laser in the fiber loop cavity. The time interval between two adjacent 

spikes of 29.5ns shown in Fig.2 (d) is equivalent to the round trip time of the chaotic laser inside the 

loop and indicates that the length of fiber loop cavity in our experiment is 6.05 m. The chaotic 

autocorrelation coefficient peaks exponentially fitted is shown in Fig.2 (d) and the ring down time of 

174.54 ns is obtained. 

(a)                                           (b)

(c)                                        (d)

Fig.2. (a) Time series of chaotic fiber laser , (b) chaotic laser spectrum , (c) autocorrelation curve, and



(d) Autocorrelation curve of the decayed chaotic laser.

     The demodulation principle of sensing system is based on the variation of overlap area of the 

spectrum of the FBG and chaotic laser. The mathematical expressions of spectrum of chaotic ( )P 

laser and the reflection spectrum  of FBG can be found in our previous work [38]. ( )R 

      
              Fig. 3.  Spectrum of chaotic laser and reflected spectrum of FBG. 

FBG is equivalent to a narrow band filter, one part of the light is back-reflected and the other is 

forward-propagated. The partially back-reflected of the chaotic laser induces the transmission loss of 

the chaotic laser when the chaotic laser is injected into the fiber loop cavity. The shadow area shown in 

Fig.3 is related to the transmission loss of chaotic laser which is incurred by FBG in the fiber loop, and 

the formulation of the loss  can be expressed as:B
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Substituting mathematical expressions of and  into Eq. (1) and integrating the ( )P  ( )R 

results over wavelength, we can obtain:     
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Where is the temperature sensitivity coefficient of the FBG，  is the change of  T

temperature. The central wavelength of FBG shown in Eq. (3) would change when the temperature 

change. Thus the transmission loss also changes and it cause the change of the autocorrelation B

coefficient ring down time in the fiber loop cavity. The ring down time of chaotic correlation 

coefficient for the sensing system is given by [37]:
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Where , , and are fiber refractive index, fiber loop length, light speed in vacuum and n L c A

inherent loss of fiber loop, Substituting Eq.(2) into Eq.(4) and the ring down time is: 
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The relationship between ring down time ( ) and central wavelength ( ) shift of FBG incurred  B

by temperature is established.

             Fig.4. The simulation of the ring down time with the change of temperature.

In order to verify the feasibility of the sensing approach, the simulation of the sensing system is 

carried out. The central wavelength and peak power of chaotic laser is set to 1550.21nm and 2mW 

respectively. The central wavelength of FBG and the peak reflectivity are taken to 1549.950nm and 

12%  respectively. Take the length of fiber loop L=6.05m and fiber refractive index n= 1.464 for the 



simulation. The central wavelength of FBG is changed at the interval of 0.03nm according to the Eq. 

(5). Fig.4 shows the relationship between the ring down time and temperature.
 
According to the Eq. (3) 

and (5), the temperature measurement and the change of central wavelength of the FBG can be 

achieved simultaneously by the ring down time of autocorrelation coefficient.

3. Experimental results and discussion
    

 In the experiment, the laser wavelength was tuned to 1550.21nm, which is 0.26nm away from 

the central wavelength of FBG. A thermo-tank with the highest operation temperature of 300℃ and the 

resolution of 0.1℃was used to control temperature of FBG, the FBG was placed loosely in the thermo-

tank to ensure no bend and strain on FBG, meanwhile there is an electronic thermometer to monitor the 

actual temperature of FBG. Fig.5 (a) shows the ring down time of autocorrelation coefficient vary as 

the temperature and it indicates the variation process of overlap area of spectrum of FBG and chaotic 

laser. The temperatures is set in the range of 28.8℃ -78.9℃ . The ring down time of autocorrelation 

coefficient varied from 156.71ns to 98.72ns and back to 158.75ns corresponding to increase of 

temperature. The ring down time approximately is a constant when temperatures were lower than 34.1

℃  and higher than 77.8℃  due to there is no interaction between FBG and chaotic laser. Fig.5(b) 

shows the response of temperature sensor in range of 34.1℃-52℃, the sensor presents a good linear 

response to the change of temperature and the sensitivity is 3.23ns/℃. Fig.5(c) shows the response of 

temperature sensor in range of 60.4℃-77.8℃ and the sensitivity of 3.52ns/℃. A gap between the two 

fitted intervals is attributed to the excessive optical loss caused by FBG [24]. Fig.5(b) and (c) show the 

temperature sensor has the operation scope of 35.3℃  approximately. The ring down time at each 

temperature mentioned above was the average of five events and the measurement was performed after 

each individual temperature was stable. The error bars of the five events are shown in the Fig.5 (b) and 

Fig.5(c) and the standard deviation of the ring down time measured is kept within 2 ns. This indicates 

the fiber loop ring down sensing system has great stability. The sensing system can have different 

temperature measurement regions when the chaotic laser wavelength is set to other values.

 



          

                        (a)

（b）          （c）

Fig.5. Ring down time versus temperature.（ a） The change of ring down time in 28.8℃ -78.9℃ .（ b） The 

change of ring down time in 34.1℃-52℃.（c）The change of ring down time in 60.4℃-77.8℃.

      In order to evaluate the repeatability of the experiment, we carried out the temperature 

measurement at five different times, the error bars of measurements are shown in Fig.6. The standard 

deviation of ring down time was kept within 2ns, it shows that the sensing system has good 

repeatability.         



           

Fig.6. The results of five experiments at different times

We further demodulated the central wavelength of FBG at different temperatures through the 

change of the ring down time. Under the condition of invariable in the temperature, the dependence of 

ring down time versus wavelength of chaotic laser can be obtained by tuning the wavelength of chaotic 

laser with a step of 0.02nm. The temperature is changed from 24.1℃ to 78.2℃ , we can obtain the 

relationship between the ring down time of autocorrelation coefficient and the wavelength of chaotic 

laser at different temperature shown in Fig.7(a). The results show that these curves have the same 

FWHM and the lowest point of each curve is different due to the shape of reflection spectrum of FBG 

changing with increasing temperature. The wavelengths corresponding to the lowest point of each 

curve represents the central wavelength of FBG at the temperature at the moment. The central 

wavelength of FBG is then plotted as a function of temperature shown in Fig.7(b), and the fitted line 

has a slope of 0.01nm/℃ which is consistent with theoretical value. 



(a)                                             (b)

       Fig.7. (a) The curves of ring down time respect to chaotic wavelength at different temperatures; (b) 

Central wavelength of FBG versus temperature.

4. Conclusions

A chaotic correlation fiber loop ring down temperature sensor is reported. The sensing system 

uses chaotic laser as the input of the fiber loop cavity, a FBG as the sensing unit and the ring down 

time of autocorrelation peak of chaotic light as the sensing parameter. This proposed technique 

significantly simplifies the section of light source of sensing system and allows a shorter length of fiber 

loop. The temperature measurement results show a good linear response and demonstrate a sensitivity 

of 3.52ns/℃, and the temperature sensitivity of FBG is 0.01nm/℃ was attained. This new approach of 

FLRD system should be useful in practical temperature sensing application.
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