1,293 research outputs found

    The High Arctic in Extreme Winters: Vortex, Temperature, and MLS and ACE-FTS Trace Gas Evolution

    Get PDF
    The first three Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns at Eureka (80° N, 86° W) were during two extremes of Arctic winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry, and Aura Microwave Limb Sounder (MLS), with meteorological analyses and Eureka lidar and radiosonde temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport and chemistry, and to provide a context for interpretation of campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, above where it could be accurately represented in the meteorological analyses. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with Eureka radiosondes, and with lidar data up to 50–60 km. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex during the 2004 and 2006 Eureka campaigns compared to that in 2005

    Correlation dynamics between electrons and ions in the fragmentation of D2_2 molecules by short laser pulses

    Full text link
    We studied the recollision dynamics between the electrons and D2+_2^+ ions following the tunneling ionization of D2_2 molecules in an intense short pulse laser field. The returning electron collisionally excites the D2+_2^+ ion to excited electronic states from there D2+_2^+ can dissociate or be further ionized by the laser field, resulting in D+^+ + D or D+^+ + D+^+, respectively. We modeled the fragmentation dynamics and calculated the resulting kinetic energy spectrum of D+^+ to compare with recent experiments. Since the recollision time is locked to the tunneling ionization time which occurs only within fraction of an optical cycle, the peaks in the D+^+ kinetic energy spectra provides a measure of the time when the recollision occurs. This collision dynamics forms the basis of the molecular clock where the clock can be read with attosecond precision, as first proposed by Corkum and coworkers. By analyzing each of the elementary processes leading to the fragmentation quantitatively, we identified how the molecular clock is to be read from the measured kinetic energy spectra of D+^+ and what laser parameters be used in order to measure the clock more accurately.Comment: 13 pages with 14 figure

    The role of parent, classmate, and teacher support in student engagement: Evidence from Ghana

    Get PDF
    The literature is unequivocal about the importance of improving academic engagement in addressing challenges such as school drop out or increasing student motivation. What is less certain, particularly in the literature from developing countries, is how social support systems (parents, teachers, and classmates) influence students’ emotional and behavioral engagement. Drawing from the ecological perspective, this study analyzes data from Ghana using structural equation modeling to examine mediated and unmediated pathways through which parent, teacher, and classmate support affect students’ emotional and behavioral engagement. Findings suggest classmate support has the strongest association with student engagement, followed by parental support. Teacher support is neither a mediator nor a direct predictor of student engagement. These findings have implications for teacher training and professional development, especially training on how to actively involve parents in motivating their children to be engaged scholars

    Experimental vertical stability studies for ITER performance and design

    Get PDF
    Operating experimental devices have provided key inputs to the design process for ITER axisymmetric control. In particular, experiments have quantified controllability and robustness requirements in the presence of realistic noise and disturbance environments, which are difficult or impossible to characterize with modelling and simulation alone. This kind of information is particularly critical for ITER vertical control, which poses the highest demands on poloidal field system performance, since the consequences of loss of vertical control can be severe. This work describes results of multi-machine studies performed under a joint ITPA experiment (MDC-13) on fundamental vertical control performance and controllability limits. We present experimental results from Alcator C-Mod, DIII-D, NSTX, TCV and JET, along with analysis of these data to provide vertical control performance guidance to ITER. Useful metrics to quantify this control performance include the stability margin and maximum controllable vertical displacement. Theoretical analysis of the maximum controllable vertical displacement suggests effective approaches to improving performance in terms of this metric, with implications for ITER design modifications. Typical levels of noise in the vertical position measurement and several common disturbances which can challenge the vertical control loop are assessed and analysed.United States Department of Energy (DE-FC02-04ER54698, DEAC52- 07NA27344, and DE-FG02-04ER54235

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Late-onset epilepsy and 25-year cognitive change: The Atherosclerosis Risk in Communities (ARIC) study

    Get PDF
    Objective: To define the association between late-onset epilepsy (LOE) and 25-year change in cognitive performance. Methods: The Atherosclerosis Risk in Communities (ARIC) study is a multicenter longitudinal cohort study with participants from four U.S. communities. From linked Medicare claims, we identified cases of LOE, defined as ≥2 seizure-related diagnostic codes starting at age ≥67. The ARIC cohort underwent evaluation with in-person visits at intervals of 3-15 years. Cognition was evaluated 4 times over >25 years (including before the onset of seizures) using the Delayed Word Recall Test (DWRT), Digit Symbol Substitution Test (DSST), and Word Fluency Test (WFT); a global z-score was also calculated. We compared the longitudinal cognitive changes of participants with and without LOE, adjusting for demographics and LOE risk factors. Results: From 8033 ARIC participants with midlife cognitive testing and Medicare claims data available (4523 [56%] female, 1392 [17%] Black), we identified 585 cases of LOE. The rate of cognitive decline was increased on all measures in the participants who developed LOE compared to those without LOE. On the measure of global cognition, participants with LOE declined by −0.43 z-score points more over 25 years than did participants without epilepsy (95% confidence interval [CI] −0.59 to −0.27). Prior to the onset of seizures, cognitive decline was more rapid on the DWRT, DSST, and global z-scores in those who would later develop LOE than it was in non-LOE participants. Results were similar after excluding data from participants with dementia. Significance: Global cognition, verbal memory, executive function, and word fluency declined faster over time in persons developing LOE than without LOE. Declines in cognition preceding LOE suggest these are linked; it will be important to investigate causes for midlife cognitive declines associated with LOE

    "Dark energy" in the Local Void

    Full text link
    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (∼5×1015 M⊙\sim5\times10^{15}\,M_\odot) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space Scienc

    Magnetic Field Effects on Neutron Diffraction in the Antiferromagnetic Phase of UPt3UPt_3

    Get PDF
    We discuss possible magnetic structures in UPt3_3 based on our analysis of elastic neutron-scattering experiments in high magnetic fields at temperatures T<TNT<T_N. The existing experimental data can be explained by a single-{\bf q} antiferromagnetic structure with three independent domains. For modest in-plane spin-orbit interactions, the Zeeman coupling between the antiferromagnetic order parameter and the magnetic field induces a rotation of the magnetic moments, but not an adjustment of the propagation vector of the magnetic order. A triple-{\bf q} magnetic structure is also consistent with neutron experiments, but in general leads to a non-uniform magnetization in the crystal. New experiments could decide between these structures.Comment: 5 figures included in the tex

    Collinear helium under periodic driving: stabilization of the asymmetric stretch orbit

    Get PDF
    The collinear eZe configuration of helium, with the electrons on opposite sides of the nucleus, is studied in the presence of an external electromagnetic (laser or microwave) field. We show that the classically unstable "asymmetric stretch" orbit, on which doubly excited intrashell states of helium with maximum interelectronic angle are anchored, can be stabilized by means of a resonant driving where the frequency of the electromagnetic field equals the frequency of Kepler-like oscillations along the orbit. A static magnetic field, oriented parallel to the oscillating electric field of the driving, can be used to enforce the stability of the configuration with respect to deviations from collinearity. Quantum Floquet calculations within a collinear model of the driven two-electron atom reveal the existence of nondispersive wave packets localized on the stabilized asymmetric stretch orbit, for double excitations corresponding to principal quantum numbers of the order of N > 10.Comment: 13 pages, 12 figure

    Dementia in late-onset epilepsy: The Atherosclerosis Risk in Communities study

    Get PDF
    OBJECTIVE: To determine the risk of dementia after the development of late-onset epilepsy. METHODS: We used data from the Atherosclerosis Risk in Communities (ARIC) cohort study, which started in 1987 to 1989 with 15,792 mostly Black and White men and women from 4 US communities. We identified late-onset epilepsy (LOE; seizures starting at age 67 or later) from linked Medicare claims data. We used a Cox proportional hazards regression model to evaluate associations between LOE and dementia through 2017 as ascertained from neuropsychological testing, interviews, and hospital discharge surveillance, and we used multinomial logistic regression to assess the risk of dementia and mild cognitive impairment in the subset with full neuropsychological assessments available. We adjusted for demographics and vascular and Alzheimer disease risk factors. RESULTS: Of 9,033 ARIC participants with sufficient Medicare coverage data (4,980 [55.1%] female, 1993 [22.1%] Black), 671 met the definition of LOE. Two hundred seventy-nine (41.6%) participants with and 1,408 (16.8%) without LOE developed dementia (p < 0.001). After a diagnosis of LOE, the adjusted hazard ratio for developing subsequent dementia was 3.05 (95% confidence interval 2.65-3.51). The median time to dementia ascertainment after the onset of LOE was 3.66 years (quartile 1-3, 1.28-8.28 years). INTERPRETATION: The risk of incident dementia is substantially elevated in individuals with LOE. Further work is needed to explore causes for the increased risk of dementia in this growing population
    • …
    corecore