1,421 research outputs found
Techniques for the realization of ultrareliable spaceborne computers Interim scientific report
Reliability tests on spaceborne digital computer
Quantum Circuits for the Unitary Permutation Problem
We consider the Unitary Permutation problem which consists, given unitary
gates and a permutation of , in
applying the unitary gates in the order specified by , i.e. in
performing . This problem has been
introduced and investigated by Colnaghi et al. where two models of computations
are considered. This first is the (standard) model of query complexity: the
complexity measure is the number of calls to any of the unitary gates in
a quantum circuit which solves the problem. The second model provides quantum
switches and treats unitary transformations as inputs of second order. In that
case the complexity measure is the number of quantum switches. In their paper,
Colnaghi et al. have shown that the problem can be solved within calls in
the query model and quantum switches in the new model. We
refine these results by proving that quantum switches
are necessary and sufficient to solve this problem, whereas calls
are sufficient to solve this problem in the standard quantum circuit model. We
prove, with an additional assumption on the family of gates used in the
circuits, that queries are required, for any
. The upper and lower bounds for the standard quantum circuit
model are established by pointing out connections with the permutation as
substring problem introduced by Karp.Comment: 8 pages, 5 figure
Structural and functional characterization of Pseudomonas aeruginosa CupB chaperones
Pseudomonas aeruginosa, an important human pathogen, is estimated to be responsible for,10% of nosocomial infections worldwide. The pathogenesis of P. aeruginosa starts from its colonization in the damaged tissue or medical devices (e. g. catheters, prothesis and implanted heart valve etc.) facilitated by several extracellular adhesive factors including fimbrial pili. Several clusters containing fimbrial genes have been previously identified on the P. aeruginosa chromosome and named cup [1]. The assembly of the CupB pili is thought to be coordinated by two chaperones, CupB2 and CupB4. However, due to the lack of structural and biochemical data, their chaperone activities remain speculative. In this study, we report the 2.5 A crystal structure of P. aeruginosa CupB2. Based on the structure, we further tested the binding specificity of CupB2 and CupB4 towards CupB1 (the presumed major pilus subunit) and CupB6 (the putative adhesin) using limited trypsin digestion and strep-tactin pull-down assay. The structural and biochemical data suggest that CupB2 and CupB4 might play different, but not redundant, roles in CupB secretion. CupB2 is likely to be the chaperone of CupB1, and CupB4 could be the chaperone of CupB4:CupB5:CupB6, in which the interaction of CupB4 and CupB6 might be mediated via CupB5
Unraveling the molecular basis of subunit specificity in P pilus assembly by mass spectrometry
P pili are multisubunit fibers essential for the attachment of uropathogenic Escherichia coli to the kidney. These fibers are formed by the noncovalent assembly of six different homologous subunit types in an array that is strictly defined in terms of both the number and order of each subunit type. Assembly occurs through a mechanism termed “donor-strand exchange (DSE)” in which an N-terminal extension (Nte) of one subunit donates a β-strand to an adjacent subunit, completing its Ig fold. Despite structural determination of the different subunits, the mechanism determining specificity of subunit ordering in pilus assembly remained unclear. Here, we have used noncovalent mass spectrometry to monitor DSE between all 30 possible pairs of P pilus subunits and their Ntes. We demonstrate a striking correlation between the natural order of subunits in pili and their ability to undergo DSE in vitro. The results reveal insights into the molecular mechanism by which subunit ordering during the assembly of this complex is achieved
Structure-function analysis reveals that the Pseudomonas aeruginosa Tps4 two-partner secretion system is involved in CupB5 translocation
Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium, synonymous with cystic fibrosis patients, which can cause chronic infection of the lungs. This pathogen is a model organism to study biofilms: a bacterial population embedded in an extracellular matrix that provide protection from environmental pressures and lead to persistence. A number of Chaperone-Usher Pathways, namely CupA-CupE, play key roles in these processes by assembling adhesive pili on the bacterial surface. One of these, encoded by the cupB operon, is unique as it contains a nonchaperone-usher gene product, CupB5. Two-partner secretion (TPS) systems are comprised of a C-terminal integral membrane β-barrel pore with tandem N-terminal POTRA (POlypeptide TRansport Associated) domains located in the periplasm (TpsB) and a secreted substrate (TpsA). Using NMR we show that TpsB4 (LepB) interacts with CupB5 and its predicted cognate partner TpsA4 (LepA), an extracellular protease. Moreover, using cellular studies we confirm that TpsB4 can translocate CupB5 across the P. aeruginosa outer membrane, which contrasts a previous observation that suggested the CupB3 P-usher secretes CupB5. In support of our findings we also demonstrate that tps4/cupB operons are coregulated by the RocS1 sensor suggesting P. aeruginosa has developed synergy between these systems. Furthermore, we have determined the solution-structure of the TpsB4-POTRA1 domain and together with restraints from NMR chemical shift mapping and in vivo mutational analysis we have calculated models for the entire TpsB4 periplasmic region in complex with both TpsA4 and CupB5 secretion motifs. The data highlight specific residues for TpsA4/CupB5 recognition by TpsB4 in the periplasm and suggest distinct roles for each POTRA domain
Desarrollo y evaluación mecánica de cubiertas poliméricas a base de nanocápsulas cargadas con aceite esencial de Thymus vulgaris.
A nivel mundial se estima que las pérdidas postcosecha de frutas y hortalizas frescas oscilan entre 15 y 85%. En los últimos años se han investigado las propiedades y aplicaciones del uso de recubrimientos y películas que mantengan la calidad de los alimentos y prolonguen la vida útil de estos. El aceite esencial de Thymus vulgaris han sido utilizado en cubiertas poliméricas por su actividad antibacteriana, sin embargo debido a su gran volatilidad, su uso se ha visto limitado por lo que es necesario su nanoencapsulación. Las NC obtenidas por la técnica de nanoprecipitación, fueron homogéneas y estables y se utilizaron para formar las cubiertas. Estas cubiertas fueron transparentes, homogéneas y resistentes al doblez. En base a sus propiedades mecánicas, se demostró que, las cubiertas formadas a base de NC, presentan un bajo porcentaje de elongación y rompimiento pero una adhesión elevada. Las cubiertas poliméricas obtenidas a base de NC cargadas con el aceite esencial de Thymus vulgaris, tienen un gran potencial como recubrimiento de frutas y hortalizas
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
Non-culprit MACE-rate in LRP:The influence of optimal medical therapy using DAPT and statins
Background/Purpose: The Lipid Rich Plaque (LRP) study demonstrated the association between coronary plaque lipid content and outcomes. In this LRP substudy, we assessed the impact of optimal medical therapy (OMT) on the occurrence of non-culprit major adverse cardiac events (NC-MACE). Advanced intracoronary imaging modalities are able to identify patients with vulnerable coronary lesion morphology associated with future events. Methods/Materials: A total of 1270 patients who underwent cardiac catheterization for suspected coronary artery disease (CAD) with evaluable maxLCBI4mm in non-culprit vessels and known medical therapy after discharge were followed for 2 years. OMT was defined as the use of a statin and dual antiplatelet therapy (DAPT). Results: Among the 1270 patients included in this substudy, 1110 (87.7%) had PCI for an index event, and 1014 (80%) patients received OMT. Estimated cumulative incidence functions of NC-MACE did not differ significantly between patients treated with or without OMT (log-rank p-value = 0.876). In patients labeled high risk (maxLCBI4mm > 400), cumulative incidence function also did not differ between patients treated with vs without OMT (log-rank p-value = 0.19). Conclusions: In the current LRP analysis, we could not identify a beneficial effect of OMT in the reduction of NC-MACE rate, even in patients with high-risk plaques during 24-month follow-up
Non Thermal Irreversible Electroporation: Novel Technology for Vascular Smooth Muscle Cells Ablation
Non thermal Irreversible electroporation (NTIRE) is a new tissue ablation method that induces selective damage only to the cell membrane while sparing all other tissue components. Our group has recently showed that NTIRE attenuated neointimal formation in rodent model. The goal of this study was to determine optimal values of NTIRE for vascular smooth muscle cell (VSMC) ablation.33 Sprague-Dawley rats were used to compare NTIRE protocols. Each animal had NTIRE applied to its left common carotid artery using a custom-made electrodes. The right carotid artery was used as control. Electric pulses of 100 microseconds were used. Eight IRE protocols were compared: 1-4) 10 pulses at a frequency of 10 Hz with electric fields of 3500, 1750, 875 and 437.5 V/cm and 5-8) 45 and 90 pulses at a frequency of 1 Hz with electric fields of 1750 and 875 V/cm. Animals were euthanized after one week. Histological analysis included VSMC counting and morphometry of 152 sections. Selective slides were stained with elastic Van Gieson and Masson trichrome to evaluate extra-cellular structures. The most efficient protocols were 10 pulses of 3500 V/cm at a frequency of 10 Hz and 90 pulses of 1750 V/cm at a frequency of 1 Hz, with ablation efficiency of 89+/-16% and 94+/-9% respectively. Extra-cellular structures were not damaged and the endothelial layer recovered completely.NTIRE is a promising, efficient and simple novel technology for VMSC ablation. It enables ablation within seconds without causing damage to extra-cellular structures, thus preserving the arterial scaffold and enabling endothelial regeneration. This study provides scientific information for future anti-restenosis experiments utilizing NTIRE
- …