184 research outputs found

    An analysis of cosmological perturbations in hydrodynamical and field representations

    Get PDF
    Density fluctuations of fluids with negative pressure exhibit decreasing time behaviour in the long wavelength limit, but are strongly unstable in the small wavelength limit when a hydrodynamical approach is used. On the other hand, the corresponding gravitational waves are well behaved. We verify that the instabilities present in density fluctuations are due essentially to the hydrodynamical representation; if we turn to a field representation that lead to the same background behaviour, the instabilities are no more present. In the long wavelength limit, both approachs give the same results. We show also that this inequivalence between background and perturbative level is a feature of negative pressure fluid. When the fluid has positive pressure, the hydrodynamical representation leads to the same behaviour as the field representation both at the background and perturbative levels.Comment: Latex file, 18 page

    Higher spin fields and the problem of cosmological constant

    Get PDF
    The cosmological evolution of free massless vector or tensor (but not gauge) fields minimally coupled to gravity is analyzed. It is shown that there are some unstable solutions for these fields in De Sitter background. The back reaction of the energy-momentum tensor of such solutions to the original cosmological constant exactly cancels the latter and the expansion regime changes from the exponential to the power law one. In contrast to the adjustment mechanism realized by a scalar field the gravitational coupling constant in this model is time-independent and the resulting cosmology may resemble the realistic one.Comment: 15 pages, Latex twic

    Properties of cosmologies with dynamical pseudo Nambu-Goldstone bosons

    Get PDF
    We study observational constraints on cosmological models with a quintessence field in the form of a dynamical pseudo Nambu-Goldstone boson. After reviewing the properties of the solutions, from a dynamical systems phase space analysis, we consider the constraints on parameter values imposed by luminosity distances from the 60 Type Ia supernovae published by Perlmutter et al., and also from gravitational lensing statistics of distant quasars. In the case of the Type Ia supernovae we explicitly allow for the possibility of evolution of the peak luminosities of the supernovae sources, using simple empirical models which have been recently discussed in the literature. We find weak evidence to suggest that the models with supernovae evolution fit the data better in the context of the quintessence models in question. If source evolution is a reality then the greatest challenge facing these models is the tension between current value of the expansion age, H_0 t_0, and the fraction of the critical energy density, Omega_{phi0}, corresponding to the scalar field. Nonetheless there are ranges of the free parameters which fit all available cosmological data.Comment: 22 pages, RevTeX, 13 figures, epsf. v3: References added, plus a few sentences to clarify some small points; v4: Typos fixe

    New Constraints from High Redshift Supernovae and Lensing Statistics upon Scalar Field Cosmologies

    Full text link
    We explore the implications of gravitationally lensed QSOs and high-redshift SNe Ia observations for spatially flat cosmological models in which a classically evolving scalar field currently dominates the energy density of the Universe. We consider two representative scalar field potentials that give rise to effective decaying Λ\Lambda (``quintessence'') models: pseudo-Nambu-Goldstone bosons (V(ϕ)=M4(1+cos(ϕ/f))V(\phi)=M^4(1+\cos (\phi /f)) ) and an inverse power-law potential (V(ϕ)=M4+αϕαV(\phi)=M^{4+\alpha}\phi ^{-\alpha}). We show that a large region of parameter space is consistent with current data if Ωm0>0.15\Omega_{m0} > 0.15. On the other hand, a higher lower bound for the matter density parameter suggested by large-scale galaxy flows, Ωm0>0.3\Omega_{m0} > 0.3, considerably reduces the allowed parameter space, forcing the scalar field behavior to approach that of a cosmological constant.Comment: 6 pages, 2 figures, submitted to PR

    Cosmic Concordance and Quintessence

    Get PDF
    We present a comprehensive study of the observational constraints on spatially flat cosmological models containing a mixture of matter and quintessence --- a time varying, spatially inhomogeneous component of the energy density of the universe with negative pressure. Our study also includes the limiting case of a cosmological constant. Low red shift constraints include the Hubble parameter, baryon fraction, cluster abundance, age of the universe, bulk velocity and shape of the mass power spectrum; intermediate red shift constraints are due to type 1a supernovae, gravitational lensing, the Ly-a forest, and the evolution of large scale structure; high red shift constraints are based on cosmic microwave background temperature anisotropy. Mindful of systematic errors, we adopt a conservative approach in applying these constraints. We determine that quintessence models in which the matter density parameter is 0.2 \ls \Omega_m \ls 0.5 and the effective, density-averaged equation of state is -1 \le w \ls -0.2, are consistent with the most reliable, current low red shift and CMB observations at the 2σ2\sigma level. Factoring in the constraint due to type 1a SNe, the range for the equation of state is reduced to -1 \le w \ls -0.4, where this range represents models consistent with each observational constraint at the 2σ\sigma level or better (concordance analysis). A combined maximum likelihood analysis suggests a smaller range, -1 \le w \ls -0.6. We find that the best-fit and best-motivated quintessence models lie near Ωm0.33\Omega_m \approx 0.33, h0.65h \approx 0.65, and spectral index ns=1n_s=1, with an effective equation of state w0.65w \approx -0.65 for ``tracker'' quintessence and w=1w=-1 for ``creeper'' quintessence. (abstract shortened)Comment: revised to match ApJ version; 33 pages; 20 figures, 4 in color; uses emulateapj.st

    Cosmological constraints from lensing statistics and supernovae on the cosmic equation of state

    Get PDF
    We investigate observational constraints from lensing statistics and high-z type Ia supernovae on flat cosmological models with nonrelativistic matter and an exotic fluid with equation of state, px=(m/31)ρxp_x=(m/3 -1)\rho_x. We show that agreement with both tests at the 68% confidence level is possible if the parameter mm is low (m0.85m \lesssim 0.85) and 0.24Ωm00.380.24 \lesssim \Omega_{m0} \lesssim 0.38 with lower values of Ωm0\Omega_{m0} corresponding to higher mm. We find that a conventional cosmological constant model with Ωm00.33\Omega_{m0}\simeq 0.33 is the best fit model of the combined likelihood.Comment: 7 pages, 4 postscript figures, revtex, submitted to Phys. Rev.

    Future supernova probes of quintessence

    Get PDF
    We investigate the potential of a future supernovae data set, as might be obtained by the proposed SNAP satellite, to discriminate between two possible explanations for the observed dimming of the high redshift type IA supernovae: namely, either (i) a cosmological evolution for which the expansion of the universe has been accelerating for a substantial range of redshifts z∼1; or (ii) an unexpected supernova luminosity evolution over such a redshift range. By evaluating Bayes factors we show that within the context of spatially flat model universes with a dark energy the future SNAP data set should be able to discriminate these two possibilities. Our calculations assume particular cosmological models with a quintessence field in the form of a dynamical pseudo Nambu-Goldstone boson (PNGB), and a simple empirical model of the evolution of peak luminosities of the supernovae sources which has been recently discussed in the literature. We also show that the fiducial SNAP data set, simulated with the assumption of no source evolution, is able to discriminate the PNGB model from a number of other spatially flat quintessence models which have been widely studied in the literature, namely those with inverse power-law, simple exponential and double-exponential potentials.S. C. Cindy Ng and David L. Wiltshir

    Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA

    Get PDF
    In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-γS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action

    Thermodynamics of Decaying Vacuum Cosmologies

    Get PDF
    The thermodynamic behavior of vacuum decaying cosmologies is investigated within a manifestly covariant formulation. Such a process corresponds to a continuous irreversible energy flow from the vacuum component to the created matter constituents. It is shown that if the specific entropy per particle remains constant during the process, the equilibrium relations are preserved. In particular, if the vacuum decays into photons, the energy density ρ\rho and average number density of photons nn scale with the temperature as ρT4\rho \sim T^{4} and nT3n \sim T^{3}. The temperature law is determined and a generalized Planckian type form of the spectrum, which is preserved in the course of the evolution, is also proposed. Some consequences of these results for decaying vacuum FRW type cosmologies as well as for models with ``adiabatic'' photon creation are discussed.Comment: 21 pages, uses LATE
    corecore