Abstract

We present a comprehensive study of the observational constraints on spatially flat cosmological models containing a mixture of matter and quintessence --- a time varying, spatially inhomogeneous component of the energy density of the universe with negative pressure. Our study also includes the limiting case of a cosmological constant. Low red shift constraints include the Hubble parameter, baryon fraction, cluster abundance, age of the universe, bulk velocity and shape of the mass power spectrum; intermediate red shift constraints are due to type 1a supernovae, gravitational lensing, the Ly-a forest, and the evolution of large scale structure; high red shift constraints are based on cosmic microwave background temperature anisotropy. Mindful of systematic errors, we adopt a conservative approach in applying these constraints. We determine that quintessence models in which the matter density parameter is 0.2 \ls \Omega_m \ls 0.5 and the effective, density-averaged equation of state is -1 \le w \ls -0.2, are consistent with the most reliable, current low red shift and CMB observations at the 2σ2\sigma level. Factoring in the constraint due to type 1a SNe, the range for the equation of state is reduced to -1 \le w \ls -0.4, where this range represents models consistent with each observational constraint at the 2σ\sigma level or better (concordance analysis). A combined maximum likelihood analysis suggests a smaller range, -1 \le w \ls -0.6. We find that the best-fit and best-motivated quintessence models lie near Ωm0.33\Omega_m \approx 0.33, h0.65h \approx 0.65, and spectral index ns=1n_s=1, with an effective equation of state w0.65w \approx -0.65 for ``tracker'' quintessence and w=1w=-1 for ``creeper'' quintessence. (abstract shortened)Comment: revised to match ApJ version; 33 pages; 20 figures, 4 in color; uses emulateapj.st

    Similar works

    Available Versions

    Last time updated on 01/04/2019