71 research outputs found

    Vertical distribution of aerosols in the boundary layer during non-KOSA periods in spring at Ishikawa, Japan : Preliminary results of the observation using a tethered balloon

    Get PDF
    金沢大学大学院自然科学研究科場所:金沢大学自然科学研究科図書館棟1階,講演会場:図書館棟1階 大会議室,ポスター会場:図書館棟1階12会議室,主催・共催:文部科学省21世紀COE「環日本海域の環境計測と長期・短期変動予測」, 大気環境学会, 金沢大学工学

    Direct evidence for pitavastatin induced chromatin structure change in the KLF4 gene in endothelial cells.

    Get PDF
    Statins exert atheroprotective effects through the induction of specific transcriptional factors in multiple organs. In endothelial cells, statin-dependent atheroprotective gene up-regulation is mediated by Kruppel-like factor (KLF) family transcription factors. To dissect the mechanism of gene regulation, we sought to determine molecular targets by performing microarray analyses of human umbilical vein endothelial cells (HUVECs) treated with pitavastatin, and KLF4 was determined to be the most highly induced gene. In addition, it was revealed that the atheroprotective genes induced with pitavastatin, such as nitric oxide synthase 3 (NOS3) and thrombomodulin (THBD), were suppressed by KLF4 knockdown. Myocyte enhancer factor-2 (MEF2) family activation is reported to be involved in pitavastatin-dependent KLF4 induction. We focused on MEF2C among the MEF2 family members and identified a novel functional MEF2C binding site 148 kb upstream of the KLF4 gene by chromatin immunoprecipitation along with deep sequencing (ChIP-seq) followed by luciferase assay. By applying whole genome and quantitative chromatin conformation analysis {chromatin interaction analysis with paired end tag sequencing (ChIA-PET), and real time chromosome conformation capture (3C) assay}, we observed that the MEF2C-bound enhancer and transcription start site (TSS) of KLF4 came into closer spatial proximity by pitavastatin treatment. 3D-Fluorescence in situ hybridization (FISH) imaging supported the conformational change in individual cells. Taken together, dynamic chromatin conformation change was shown to mediate pitavastatin-responsive gene induction in endothelial cells

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    Association between PPARGC1A polymorphisms and the occurrence of nonalcoholic fatty liver disease (NAFLD)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic factors as well as environmental factors are important in the development of NAFLD and in this study we investigated associations between polymorphisms of peroxisome proliferators-activated receptor γ coactivator 1α polymorphism (<it>PPARGC1A</it>) and NAFLD.</p> <p>Aims</p> <p>We recruited 115 patients with biopsy-proven NAFLD, 65 with NASH and 50 with simple steatosis, and 441 healthy control subjects and investigated 15 SNPs of <it>PPARGC1A</it>.</p> <p>Results</p> <p>SNP rs2290602 had the lowest <it>p </it>value in the dominant mode (<it>p </it>= 0.00095), and the odds ratio for NAFLD (95% CI) was 2.73 (1.48 – 5.06). rs2290602 was significantly associated with NAFLD even when the most conservative Bonferroni's correction was applied (<it>p </it>= 0.0143). The frequency of the T allele of rs2290602 was significantly higher in the NASH patients than in the control subjects (<it>p </it>= 0.00093, allele frequency mode), and its frequency in the NASH patients tended to be higher than in the simple steatosis patients (<it>p </it>= 0.09). The results of the real-time RT-PCR study showed that intrahepatic mRNA expression of <it>PPARGC1A </it>was lower in the TT group than in the GG or GT group at SNP rs2290602 (p = 0.0454).</p> <p>Conclusion</p> <p>This is the first study to demonstrate a significant association between genetic variations in <it>PPARGC1A </it>and NAFLD. This finding suggested that <it>PPARGC1A </it>polymorphism and lower expression of <it>PPARGC1A </it>mRNA in the liver are an important genetic contribution to etiology of NAFLD.</p

    Hitomi (ASTRO-H) X-ray Astronomy Satellite

    Get PDF
    The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E  >  2  keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month

    Corrigendum: Use of the index of pulmonary vascular disease for predicting longterm outcome of pulmonary arterial hypertension associated with congenital heart disease

    Get PDF

    Use of the index of pulmonary vascular disease for predicting long-term outcome of pulmonary arterial hypertension associated with congenital heart disease

    Get PDF
    AimsLimited data exist on risk factors for the long-term outcome of pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD-PAH). We focused on the index of pulmonary vascular disease (IPVD), an assessment system for pulmonary artery pathology specimens. The IPVD classifies pulmonary vascular lesions into four categories based on severity: (1) no intimal thickening, (2) cellular thickening of the intima, (3) fibrous thickening of the intima, and (4) destruction of the tunica media, with the overall grade expressed as an additive mean of these scores. This study aimed to investigate the relationship between IPVD and the long-term outcome of CHD-PAH.MethodsThis retrospective study examined lung pathology images of 764 patients with CHD-PAH aged &lt;20 years whose lung specimens were submitted to the Japanese Research Institute of Pulmonary Vasculature for pulmonary pathological review between 2001 and 2020. Clinical information was collected retrospectively by each attending physician. The primary endpoint was cardiovascular death.ResultsThe 5-year, 10-year, 15-year, and 20-year cardiovascular death-free survival rates for all patients were 92.0%, 90.4%, 87.3%, and 86.1%, respectively. The group with an IPVD of ≥2.0 had significantly poorer survival than the group with an IPVD &lt;2.0 (P = .037). The Cox proportional hazards model adjusted for the presence of congenital anomaly syndromes associated with pulmonary hypertension, and age at lung biopsy showed similar results (hazard ratio 4.46; 95% confidence interval: 1.45–13.73; P = .009).ConclusionsThe IPVD scoring system is useful for predicting the long-term outcome of CHD-PAH. For patients with an IPVD of ≥2.0, treatment strategies, including choosing palliative procedures such as pulmonary artery banding to restrict pulmonary blood flow and postponement of intracardiac repair, should be more carefully considered
    corecore