1,026 research outputs found

    Developing A New Strategy for Delivery of Neural Transplant Populations using Precursor Cell Sprays and Specialised Cell Media

    Get PDF
    Neural precursor/stem cell transplantation therapies promote regeneration in neurological injuries, but current cell delivery methods have drawbacks. These include risks with surgical microinjection (e.g., hemorrhage, embolism) and high cell loss with systemic delivery/passage through fine gauge needles. Aerosolized cell delivery offers significant benefits including rapid and minimally invasive cell delivery, and ease of delivery to end users. To develop this approach, it is necessary to prove that 1) aerosolization does not have detrimental effects on transplant cells and 2) suitable media can be identified to support cell delivery. To achieve these aims, cells are sprayed using a commercial spray device or stored in Hibernate-A, a CO2-independent nutrient solution. Histological assessments consist of cell viability analysis, immunocytochemistry, and EdU labeling. It is shown that a major neural precursor transplant population-oligodendrocyte precursor cells (OPCs)-survive following aerosolized delivery and retain their capacity for proliferation and differentiation (key to their repair function). Hibernate-A can support OPCs' survival without specialized maintenance conditions, with no detrimental impact on cell fate. It is considered that this data supports the concept of a novel class of advanced medical spray devices to facilitate transport and delivery of transplant populations in neural cell therapy

    Scaling of cardiac morphology is interrupted by birth in the developing sheep Ovis aries.

    Get PDF
    Scaling of the heart across development can reveal the degree to which variation in cardiac morphology depends on body mass. In this study, we assessed the scaling of heart mass, left and right ventricular masses, and ventricular mass ratio, as a function of eviscerated body mass across fetal and postnatal development in Horro sheep Ovis aries (~50-fold body mass range; N = 21). Whole hearts were extracted from carcasses, cleaned, dissected into chambers and weighed. We found a biphasic relationship when heart mass was scaled against body mass, with a conspicuous 'breakpoint' around the time of birth, manifest not by a change in the scaling exponent (slope), but rather a jump in the elevation. Fetal heart mass (g) increased with eviscerated body mass (Mb , kg) according to the power equation 4.90 Mb0.88 ± 0.26 (± 95%CI) , whereas postnatal heart mass increased according to 10.0 Mb0.88 ± 0.10 . While the fetal and postnatal scaling exponents are identical (0.88) and reveal a clear dependence of heart mass on body mass, only the postnatal exponent is significantly less than 1.0, indicating the postnatal heart becomes a smaller component of body mass as the body grows, which is a pattern found frequently with postnatal cardiac development among mammals. The rapid doubling in heart mass around the time of birth is independent of any increase in body mass and is consistent with the normalization of wall stress in response to abrupt changes in volume loading and pressure loading at parturition. We discuss variation in scaling patterns of heart mass across development among mammals, and suggest that the variation results from a complex interplay between hard-wired genetics and epigenetic influences

    Signs and symptoms in children with a serious infection: a qualitative study

    Get PDF
    BACKGROUND: Early diagnosis of serious infections in children is difficult in general practice, as incidence is low, patients present themselves at an early stage of the disease and diagnostic tools are limited to signs and symptoms from observation, clinical history and physical examination. Little is known which signs and symptoms are important in general practice. With this qualitative study, we aimed to identify possible new important diagnostic variables. METHODS: Semi-structured interviews with parents and physicians of children with a serious infection. We investigated all signs and symptoms that were related to or preceded the diagnosis. The analysis was done according to the grounded theory approach. Participants were recruited in general practice and at the hospital. RESULTS: 18 children who were hospitalised because of a serious infection were included. On average, parents and paediatricians were interviewed 3 days after admittance of the child to hospital, general practitioners between 5 and 8 days after the initial contact. The most prominent diagnostic signs in seriously ill children were changed behaviour, crying characteristics and the parents' opinion. Children either behaved drowsy or irritable and cried differently, either moaning or an inconsolable, loud crying. The parents found this illness different from previous illnesses, because of the seriousness or duration of the symptoms, or the occurrence of a critical incident. Classical signs, like high fever, petechiae or abnormalities at auscultation were helpful for the diagnosis when they were present, but not helpful when they were absent. CONCLUSION: behavioural signs and symptoms were very prominent in children with a serious infection. They will be further assessed for diagnostic accuracy in a subsequent, quantitative diagnostic study

    Electron quantum metamaterials in van der Waals heterostructures

    Full text link
    In recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques -- for example in the unique coloring of butterfly wings -- to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer sub-electron wavelength (as well as wavelength-scale) structuring of electronic matter, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures -- e.g., mechanical pick-up/transfer assembly -- atomic scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length-scales (such as electron wavelength, screening length, and electron mean free path). Yet electronic metamaterials promise far richer categories of behavior than those found in conventional optical metamaterial technologies. This is because unlike photons that scarcely interact with each other, electrons in subwavelength structured metamaterials are charged, and strongly interact. As a result, an enormous variety of emergent phenomena can be expected, and radically new classes of interacting quantum metamaterials designed

    BIRI: a new approach for automatically discovering and indexing available public bioinformatics resources from the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid evolution of Internet technologies and the collaborative approaches that dominate the field have stimulated the development of numerous bioinformatics resources. To address this new framework, several initiatives have tried to organize these services and resources. In this paper, we present the BioInformatics Resource Inventory (BIRI), a new approach for automatically discovering and indexing available public bioinformatics resources using information extracted from the scientific literature. The index generated can be automatically updated by adding additional manuscripts describing new resources. We have developed web services and applications to test and validate our approach. It has not been designed to replace current indexes but to extend their capabilities with richer functionalities.</p> <p>Results</p> <p>We developed a web service to provide a set of high-level query primitives to access the index. The web service can be used by third-party web services or web-based applications. To test the web service, we created a pilot web application to access a preliminary knowledge base of resources. We tested our tool using an initial set of 400 abstracts. Almost 90% of the resources described in the abstracts were correctly classified. More than 500 descriptions of functionalities were extracted.</p> <p>Conclusion</p> <p>These experiments suggest the feasibility of our approach for automatically discovering and indexing current and future bioinformatics resources. Given the domain-independent characteristics of this tool, it is currently being applied by the authors in other areas, such as medical nanoinformatics. BIRI is available at <url>http://edelman.dia.fi.upm.es/biri/</url>.</p

    Cognitive Neuropsychology of HIV-Associated Neurocognitive Disorders

    Get PDF
    Advances in the treatment of the human immunodeficiency virus (HIV) have dramatically improved survival rates over the past 10 years, but HIV-associated neurocognitive disorders (HAND) remain highly prevalent and continue to represent a significant public health problem. This review provides an update on the nature, extent, and diagnosis of HAND. Particular emphasis is placed on critically evaluating research within the realm of cognitive neuropsychology that aims to elucidate the component processes of HAND across the domains of executive functions, motor skills, speeded information processing, episodic memory, attention/working memory, language, and visuoperception. In addition to clarifying the cognitive mechanisms of HAND (e.g., impaired cognitive control), the cognitive neuropsychology approach may enhance the ecological validity of neuroAIDS research and inform the development of much needed novel, targeted cognitive and behavioral therapies

    Effects of Insulin Detemir and NPH Insulin on Body Weight and Appetite-Regulating Brain Regions in Human Type 1 Diabetes: A Randomized Controlled Trial

    Get PDF
    Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH) insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF) insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference), while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula). Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003). Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli.ClinicalTrials.gov NCT00626080

    Isolation and Maintenance-Free Culture of Contractile Myotubes from Manduca sexta Embryos

    Get PDF
    Skeletal muscle tissue engineering has the potential to treat tissue loss and degenerative diseases. However, these systems are also applicable for a variety of devices where actuation is needed, such as microelectromechanical systems (MEMS) and robotics. Most current efforts to generate muscle bioactuators are focused on using mammalian cells, which require exacting conditions for survival and function. In contrast, invertebrate cells are more environmentally robust, metabolically adaptable and relatively autonomous. Our hypothesis is that the use of invertebrate muscle cells will obviate many of the limitations encountered when mammalian cells are used for bioactuation. We focus on the tobacco hornworm, Manduca sexta, due to its easy availability, large size and well-characterized muscle contractile properties. Using isolated embryonic cells, we have developed culture conditions to grow and characterize contractile M. sexta muscles. The insect hormone 20-hydroxyecdysone was used to induce differentiation in the system, resulting in cells that stained positive for myosin, contract spontaneously for the duration of the culture, and do not require media changes over periods of more than a month. These cells proliferate under normal conditions, but the application of juvenile hormone induced further proliferation and inhibited differentiation. Cellular metabolism under normal and low glucose conditions was compared for C2C12 mouse and M. sexta myoblast cells. While differentiated C2C12 cells consumed glucose and produced lactate over one week as expected, M. sexta muscle did not consume significant glucose, and lactate production exceeded mammalian muscle production on a per cell basis. Contractile properties were evaluated using index of movement analysis, which demonstrated the potential of these cells to perform mechanical work. The ability of cultured M. sexta muscle to continuously function at ambient conditions without medium replenishment, combined with the interesting metabolic properties, suggests that this cell source is a promising candidate for further investigation toward bioactuator applications
    corecore