388 research outputs found

    Angiotensin converting enzyme inhibitor therapy in children with Alport syndrome: effect on urinary albumin, TGF-β, and nitrite excretion

    Get PDF
    BACKGROUND: Angiotensin converting enzyme inhibitors are routinely prescribed to patients with chronic kidney disease because of their known renoprotective effects. We evaluated the effect of short-term therapy with the angiotensin converting enzyme inhibitor, enalapril, in early Alport syndrome, defined as disease duration less than 10 years and a normal glomerular filtration rate. METHODS: 11 children with early Alport syndrome were investigated. Two consecutive early morning urine specimens were collected at the start of the study for measurement of urinary creatinine, total protein, albumin, TGF-β, and nitrite excretion. Patients were treated with enalapril, ≅ 0.2 mg/kg/day, once a day for 14 days. Two early morning urine specimens were collected on days 13 and 14 of enalapril treatment and two weeks later for measurement of urinary creatinine, total protein, albumin, TGF-β, and nitrite excretion. RESULTS: Prior to treatment, urinary excretion of transforming growth factor-β and nitrite, the major metabolite of nitric oxide, was within normal limits in all patients. Administration of enalapril for 2 weeks did not alter urinary albumin, transforming growth factor-β, or nitrite excretion. CONCLUSION: These findings suggest that early Alport syndrome represents a disease involving exclusively intrinsic glomerular barrier dysfunction. At this stage of the illness, there is no evidence of angiotensin II-mediated proteinuria or increased production of transforming growth factor-β and, therefore, routine treatment with an angiotensin converting enzyme inhibitor may not be warranted

    Angular-momentum coupling through the tachocline

    Full text link
    Astronomical observation of stellar rotation suggests that at least the surface layers of the Sun have lost a substantial amount of the angular momentum that they possessed at the beginning of the main-sequence phase of evolution; and solar-wind observations indicate that magnetic coupling is still draining angular momentum from the Sun today. In addition, helioseismological analysis has shown that the specific angular momentum at the top of the almost uniformly rotating radiative interior is approximately (although not exactly) the same as the spherically averaged value at the base of the (differentially rotating) convection zone, suggesting that angular momentum is being transported through the tachocline. The mechanism by which that transport is taking place is not understood. Nor is there a consensus of opinion. I review some of the suggestions that have been put forward, biassing my discussion, no doubt, according to my own opinions.Comment: 19 pages, 7 figures, conference on `Magnetic coupling between the interior and the atmosphere of the Sun' ed. S. S. Hasan and R. J. Rutten, Bangalore, December 200

    Priming with recombinant auxotrophic BCG expressing HIV-1 Gag, RT and Gp120 and boosting with recombinant MVA induces a robust T cell response in mice

    Get PDF
    In previous studies we have shown that a pantothenate auxotroph of Myocbacterium bovis BCG (BCGΔ panCD ) expressing HIV-1 subtype C Gag induced Gag-specific immune responses in mice and Chacma baboons after prime-boost immunization in combination with matched rMVA and VLP vaccines respectively. In this study recombinant BCG (rBCG) expressing HIV-1 subtype C reverse transcriptase and a truncated envelope were constructed using both the wild type BCG Pasteur strain as a vector and the pantothenate auxotroph. Mice were primed with rBCG expressing Gag and RT and boosted with a recombinant MVA, expressing a polyprotein of Gag, RT, Tat and Nef (SAAVI MVA-C). Priming with rBCGΔ panCD expressing Gag or RT rather than the wild type rBCG expressing Gag or RT resulted in higher frequencies of total HIV-specific CD8 + T cells and increased numbers of T cells specific to the subdominant Gag and RT epitopes. Increasing the dose of rBCG from 10 5 cfu to 10 7 cfu also led to an increase in the frequency of responses to subdominant HIV epitopes. A mix of the individual rBCGΔ panCD vaccines expressing either Gag, RT or the truncated Env primed the immune system for a boost with SAAVI MVA-C and generated five-fold higher numbers of HIV-specific IFN-γ-spot forming cells than mice primed with rBCGΔ panCD containing an empty vector control. Priming with the individual rBCGΔ panCD vaccines or the mix and boosting with SAAVI MVA-C also resulted in the generation of HIV-specific CD4 + and CD8 + T cells producing IFN-γ and TNF-α and CD4 + cells producing IL-2. The rBCG vaccines tested in this study were able to prime the immune system for a boost with rMVA expressing matching antigens, inducing robust, HIV-specific T cell responses to both dominant and subdominant epitopes in the individual proteins when used as individual vaccines or in a mix

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Self-assembly of Silver Nanoparticles and Multiwall Carbon Nanotubes on Decomposed GaAs Surfaces

    Get PDF
    Atomic Force Microscopy complemented by Photoluminescence and Reflection High Energy Electron Diffraction has been used to study self-assembly of silver nanoparticles and multiwall carbon nanotubes on thermally decomposed GaAs (100) surfaces. It has been shown that the decomposition leads to the formation of arsenic plate-like structures. Multiwall carbon nanotubes spin coated on the decomposed surfaces were mostly found to occupy the depressions between the plates and formed boundaries. While direct casting of silver nanoparticles is found to induce microdroplets. Annealing at 300°C was observed to contract the microdroplets into combined structures consisting of silver spots surrounded by silver rings. Moreover, casting of colloidal suspension consists of multiwall carbon nanotubes and silver nanoparticles is observed to cause the formation of 2D compact islands. Depending on the multiwall carbon nanotubes diameter, GaAs/multiwall carbon nanotubes/silver system exhibited photoluminescence with varying strength. Such assembly provides a possible bottom up facile way of roughness controlled fabrication of plasmonic systems on GaAs surfaces

    Neuroprotective Effect of Inhaled Nitric Oxide on Excitotoxic-Induced Brain Damage in Neonatal Rat

    Get PDF
    BACKGROUND: Inhaled nitric oxide (iNO) is one of the most promising therapies used in neonates. However, little information is known about its impact on the developing brain submitted to excitotoxic challenge. METHODOLOGY/PRINCIPAL FINDINGS: We investigated here the effect of iNO in a neonatal model of excitotoxic brain lesions. Rat pups and their dams were placed in a chamber containing 20 ppm NO during the first week of life. At postnatal day (P)5, rat pups were submitted to intracranial injection of glutamate agonists. At P10, rat pups exposed to iNO exhibited a significant decrease of lesion size in both the white matter and cortical plate compared to controls. Microglia activation and astrogliosis were found significantly decreased in NO-exposed animals. This neuroprotective effect was associated with a significant decrease of several glutamate receptor subunits expression at P5. iNO was associated with an early (P1) downregulation of pCREB/pAkt expression and induced an increase in pAkt protein concentration in response to excitotoxic challenge (P7). CONCLUSION: This study is the first describe and investigate the neuroprotective effect of iNO in neonatal excitotoxic-induced brain damage. This effect may be mediated through CREB pathway and subsequent modulation of glutamate receptor subunits expression

    Prevention of Wear Particle-Induced Osteolysis by a Novel V-ATPase Inhibitor Saliphenylhalamide through Inhibition of Osteoclast Bone Resorption

    Get PDF
    Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening) is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis) by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis
    corecore