303 research outputs found

    New rosette tools for developing rotational vibration-assisted incremental sheet forming

    Get PDF
    A major limitation of the incremental sheet forming (ISF) is its difficulties to manufacture hard-to-form materials. The existing ISF process variants require additional systems or devices, which compromises the process flexibility and simplicity, the unique advantages of the ISF. In this study, a novel type of rosette tools is proposed for developing a new ISF process to improve material formability, named as Rotational Vibration-assisted ISF (RV-ISF). A hard-to-form material, magnesium alloy AZ31B, has been successfully formed in the RV-ISF experiment by creating low-frequency and low-amplitude vibrations, and elevated temperatures at the local forming zone in the range of 250–450 °C. By developing the new RV-ISF, it has achieved a 60% increase in fracture depth than that by friction-stir ISF and more than 46% reduction in forming force than that by the conventional ISF. Experimental evaluation and analytical prediction of temperature increase, forming force and flow-stress reduction have concluded that the combined thermal effect and vibration softening is the key mechanism leading to the significant formability enhancement. The results show that both the rosette tool design and tool rotational speed are critical factors determining heat generation and transfer as well as vibration frequency and amplitude. Investigation on microstructural evolution has revealed that the low-frequency and low-amplitude vibrations created by the rosette tool have activated dislocations and dynamic recrystallization, and produced refined grains and increased micro hardness. The new RV-ISF developed has potentials to manufacture other hard-to-form materials and complex geometries of sheet products, overcoming the formability limitation of the current ISF technology

    Additively manufactured artificial materials with metallic meta‐atoms

    Get PDF
    This is an Open Access Article. It is published by IET under the Creative Commons Attribution 3.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/The paper presents the analysis and fabrication of artificial materials with metallic cuboid inclusions (termed here as meta-atoms) in a dielectric host material. These synthetic materials or metamaterials have been additively manufactured with a fused deposition modelling (FDM) 3D-printer. The effective permittivity and permeability have been numerically analyzed using the Maxwell-Garnett and Lewin’s approximation. Simulations and measurements have shown good agreement with analytical calculations. The anisotropy of the heterogeneous mixture due to the orientation of the meta-atoms has been demonstrated. The effective permittivity has been increased by the presence of the meta-atoms, which has the potential of producing 3D-printing metamaterials with tailored electromagnetic properties

    Direct Measurements of the Branching Fractions for D0→K−e+ÎœeD^0 \to K^-e^+\nu_e and D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0→K−e+ÎœeD^0 \to K^-e ^+\nu_e and D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0→K−e+ÎœeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0→π−e+ÎœeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0→K−e+Îœe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0→π−e+Îœe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be ∣f+K(0)∣=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and ∣f+π(0)∣=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be ∣f+π(0)/f+K(0)∣=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/Ïˆâ†’ÎłÎ·c\psi\to\gamma\eta_c is observed in five different decay channels: ÎłK+K−π+π−\gamma K^+K^-\pi^+\pi^-, ÎłÏ€+π−π+π−\gamma\pi^+\pi^-\pi^+\pi^-, ÎłK±KS0π∓\gamma K^\pm K^0_S \pi^\mp (with KS0→π+π−K^0_S\to\pi^+\pi^-), ÎłÏ•Ï•\gamma \phi\phi (with ϕ→K+K−\phi\to K^+K^-) and Îłppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.

    The σ\sigma pole in J/ψ→ωπ+π−J/\psi \to \omega \pi^+ \pi^-

    Full text link
    Using a sample of 58 million J/ψJ/\psi events recorded in the BESII detector, the decay J/ψ→ωπ+π−J/\psi \to \omega \pi^+ \pi^- is studied. There are conspicuous ωf2(1270)\omega f_2(1270) and b1(1235)πb_1(1235)\pi signals. At low ππ\pi \pi mass, a large broad peak due to the σ\sigma is observed, and its pole position is determined to be (541±39)(541 \pm 39) - ii (252±42)(252 \pm 42) MeV from the mean of six analyses. The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL

    Search for the Lepton Flavor Violation Processes J/ψ→J/\psi \to Ότ\mu\tau and eτe\tau

    Full text link
    The lepton flavor violation processes J/ψ→ΌτJ/\psi \to \mu\tau and eτe\tau are searched for using a sample of 5.8×107\times 10^7 J/ψJ/\psi events collected with the BESII detector. Zero and one candidate events, consistent with the estimated background, are observed in J/ψ→Ότ,τ→eΜˉeΜτJ/\psi \to \mu\tau, \tau\to e\bar\nu_e\nu_{\tau} and J/ψ→eτ,τ→ΌΜˉΌΜτJ/\psi\to e\tau, \tau\to\mu\bar\nu_{\mu}\nu_{\tau} decays, respectively. Upper limits on the branching ratios are determined to be Br(J/ψ→Ότ)<2.0×10−6Br(J/\psi\to\mu\tau)<2.0 \times 10^{-6} and Br(J/ψ→eτ)<8.3×10−6Br(J/\psi \to e\tau) < 8.3 \times10^{-6} at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure

    Study of J/ψ→ωK+K−J/\psi \to \omega K^+K^-

    Get PDF
    New data are presented on J/ψ→ωK+K−J/\psi \to \omega K^+K^- from a sample of 58M J/ψJ/\psi events in the upgraded BES II detector at the BEPC. There is a conspicuous signal for f0(1710)→K+K−f_0(1710) \to K^+K^- and a peak at higher mass which may be fitted with f2(2150)→KKˉf_2(2150) \to K\bar K. From a combined analysis with ωπ+π−\omega \pi ^+ \pi ^- data, the branching ratio BR(f0(1710)→ππ)/BR(f0(1710)→KKˉ)BR(f_0(1710)\to\pi\pi)/BR(f_0(1710) \to K\bar K) is <0.11< 0.11 at the 95% confidence level.Comment: 11 pages, 5 figures. Submitted to Phys. Lett.
    • 

    corecore